forked from scikit-learn/scikit-learn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhmm.py
1296 lines (1050 loc) · 47.4 KB
/
hmm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Hidden Markov Models
#
# Author: Ron Weiss <[email protected]>
# and Shiqiao Du <[email protected]>
# API changes: Jaques Grobler <[email protected]>
"""
The :mod:`sklearn.hmm` module implements hidden Markov models.
**Warning:** :mod:`sklearn.hmm` is orphaned, undocumented and has known
numerical stability issues. This module will be removed in version 0.17.
It has been moved to a separate repository:
https://github.com/hmmlearn/hmmlearn
"""
import string
import numpy as np
from .utils import check_random_state, deprecated
from .utils.extmath import logsumexp
from .base import BaseEstimator
from .mixture import (
GMM, log_multivariate_normal_density, sample_gaussian,
distribute_covar_matrix_to_match_covariance_type, _validate_covars)
from . import cluster
from . import _hmmc
__all__ = ['GMMHMM',
'GaussianHMM',
'MultinomialHMM',
'decoder_algorithms',
'normalize']
ZEROLOGPROB = -1e200
EPS = np.finfo(float).eps
NEGINF = -np.inf
decoder_algorithms = ("viterbi", "map")
@deprecated("WARNING: The HMM module and its functions will be removed in 0.17 "
"as it no longer falls within the project's scope and API. "
"It has been moved to a separate repository: "
"https://github.com/hmmlearn/hmmlearn")
def normalize(A, axis=None):
""" Normalize the input array so that it sums to 1.
WARNING: The HMM module and its functions will be removed in 0.17
as it no longer falls within the project's scope and API.
Parameters
----------
A: array, shape (n_samples, n_features)
Non-normalized input data
axis: int
dimension along which normalization is performed
Returns
-------
normalized_A: array, shape (n_samples, n_features)
A with values normalized (summing to 1) along the prescribed axis
WARNING: Modifies inplace the array
"""
A += EPS
Asum = A.sum(axis)
if axis and A.ndim > 1:
# Make sure we don't divide by zero.
Asum[Asum == 0] = 1
shape = list(A.shape)
shape[axis] = 1
Asum.shape = shape
return A / Asum
@deprecated("WARNING: The HMM module and its function will be removed in 0.17"
"as it no longer falls within the project's scope and API. "
"It has been moved to a separate repository: "
"https://github.com/hmmlearn/hmmlearn")
class _BaseHMM(BaseEstimator):
"""Hidden Markov Model base class.
Representation of a hidden Markov model probability distribution.
This class allows for easy evaluation of, sampling from, and
maximum-likelihood estimation of the parameters of a HMM.
See the instance documentation for details specific to a
particular object.
.. warning::
The HMM module and its functions will be removed in 0.17
as it no longer falls within the project's scope and API.
Attributes
----------
n_components : int
Number of states in the model.
transmat : array, shape (`n_components`, `n_components`)
Matrix of transition probabilities between states.
startprob : array, shape ('n_components`,)
Initial state occupation distribution.
transmat_prior : array, shape (`n_components`, `n_components`)
Matrix of prior transition probabilities between states.
startprob_prior : array, shape ('n_components`,)
Initial state occupation prior distribution.
algorithm : string, one of the decoder_algorithms
decoder algorithm
random_state: RandomState or an int seed (0 by default)
A random number generator instance
n_iter : int, optional
Number of iterations to perform.
thresh : float, optional
Convergence threshold.
params : string, optional
Controls which parameters are updated in the training
process. Can contain any combination of 's' for startprob,
't' for transmat, and other characters for subclass-specific
emmission parameters. Defaults to all parameters.
init_params : string, optional
Controls which parameters are initialized prior to
training. Can contain any combination of 's' for
startprob, 't' for transmat, and other characters for
subclass-specific emmission parameters. Defaults to all
parameters.
See Also
--------
GMM : Gaussian mixture model
"""
# This class implements the public interface to all HMMs that
# derive from it, including all of the machinery for the
# forward-backward and Viterbi algorithms. Subclasses need only
# implement _generate_sample_from_state(), _compute_log_likelihood(),
# _init(), _initialize_sufficient_statistics(),
# _accumulate_sufficient_statistics(), and _do_mstep(), all of
# which depend on the specific emission distribution.
#
# Subclasses will probably also want to implement properties for
# the emission distribution parameters to expose them publicly.
def __init__(self, n_components=1, startprob=None, transmat=None,
startprob_prior=None, transmat_prior=None,
algorithm="viterbi", random_state=None,
n_iter=10, thresh=1e-2, params=string.ascii_letters,
init_params=string.ascii_letters):
self.n_components = n_components
self.n_iter = n_iter
self.thresh = thresh
self.params = params
self.init_params = init_params
self.startprob_ = startprob
self.startprob_prior = startprob_prior
self.transmat_ = transmat
self.transmat_prior = transmat_prior
self._algorithm = algorithm
self.random_state = random_state
def eval(self, X):
return self.score_samples(X)
def score_samples(self, obs):
"""Compute the log probability under the model and compute posteriors.
Parameters
----------
obs : array_like, shape (n, n_features)
Sequence of n_features-dimensional data points. Each row
corresponds to a single point in the sequence.
Returns
-------
logprob : float
Log likelihood of the sequence ``obs``.
posteriors : array_like, shape (n, n_components)
Posterior probabilities of each state for each
observation
See Also
--------
score : Compute the log probability under the model
decode : Find most likely state sequence corresponding to a `obs`
"""
obs = np.asarray(obs)
framelogprob = self._compute_log_likelihood(obs)
logprob, fwdlattice = self._do_forward_pass(framelogprob)
bwdlattice = self._do_backward_pass(framelogprob)
gamma = fwdlattice + bwdlattice
# gamma is guaranteed to be correctly normalized by logprob at
# all frames, unless we do approximate inference using pruning.
# So, we will normalize each frame explicitly in case we
# pruned too aggressively.
posteriors = np.exp(gamma.T - logsumexp(gamma, axis=1)).T
posteriors += np.finfo(np.float32).eps
posteriors /= np.sum(posteriors, axis=1).reshape((-1, 1))
return logprob, posteriors
def score(self, obs):
"""Compute the log probability under the model.
Parameters
----------
obs : array_like, shape (n, n_features)
Sequence of n_features-dimensional data points. Each row
corresponds to a single data point.
Returns
-------
logprob : float
Log likelihood of the ``obs``.
See Also
--------
score_samples : Compute the log probability under the model and
posteriors
decode : Find most likely state sequence corresponding to a `obs`
"""
obs = np.asarray(obs)
framelogprob = self._compute_log_likelihood(obs)
logprob, _ = self._do_forward_pass(framelogprob)
return logprob
def _decode_viterbi(self, obs):
"""Find most likely state sequence corresponding to ``obs``.
Uses the Viterbi algorithm.
Parameters
----------
obs : array_like, shape (n, n_features)
Sequence of n_features-dimensional data points. Each row
corresponds to a single point in the sequence.
Returns
-------
viterbi_logprob : float
Log probability of the maximum likelihood path through the HMM.
state_sequence : array_like, shape (n,)
Index of the most likely states for each observation.
See Also
--------
score_samples : Compute the log probability under the model and
posteriors.
score : Compute the log probability under the model
"""
obs = np.asarray(obs)
framelogprob = self._compute_log_likelihood(obs)
viterbi_logprob, state_sequence = self._do_viterbi_pass(framelogprob)
return viterbi_logprob, state_sequence
def _decode_map(self, obs):
"""Find most likely state sequence corresponding to `obs`.
Uses the maximum a posteriori estimation.
Parameters
----------
obs : array_like, shape (n, n_features)
Sequence of n_features-dimensional data points. Each row
corresponds to a single point in the sequence.
Returns
-------
map_logprob : float
Log probability of the maximum likelihood path through the HMM
state_sequence : array_like, shape (n,)
Index of the most likely states for each observation
See Also
--------
score_samples : Compute the log probability under the model and
posteriors.
score : Compute the log probability under the model.
"""
_, posteriors = self.score_samples(obs)
state_sequence = np.argmax(posteriors, axis=1)
map_logprob = np.max(posteriors, axis=1).sum()
return map_logprob, state_sequence
def decode(self, obs, algorithm="viterbi"):
"""Find most likely state sequence corresponding to ``obs``.
Uses the selected algorithm for decoding.
Parameters
----------
obs : array_like, shape (n, n_features)
Sequence of n_features-dimensional data points. Each row
corresponds to a single point in the sequence.
algorithm : string, one of the `decoder_algorithms`
decoder algorithm to be used
Returns
-------
logprob : float
Log probability of the maximum likelihood path through the HMM
state_sequence : array_like, shape (n,)
Index of the most likely states for each observation
See Also
--------
score_samples : Compute the log probability under the model and
posteriors.
score : Compute the log probability under the model.
"""
if self._algorithm in decoder_algorithms:
algorithm = self._algorithm
elif algorithm in decoder_algorithms:
algorithm = algorithm
decoder = {"viterbi": self._decode_viterbi,
"map": self._decode_map}
logprob, state_sequence = decoder[algorithm](obs)
return logprob, state_sequence
def predict(self, obs, algorithm="viterbi"):
"""Find most likely state sequence corresponding to `obs`.
Parameters
----------
obs : array_like, shape (n, n_features)
Sequence of n_features-dimensional data points. Each row
corresponds to a single point in the sequence.
Returns
-------
state_sequence : array_like, shape (n,)
Index of the most likely states for each observation
"""
_, state_sequence = self.decode(obs, algorithm)
return state_sequence
def predict_proba(self, obs):
"""Compute the posterior probability for each state in the model
Parameters
----------
obs : array_like, shape (n, n_features)
Sequence of n_features-dimensional data points. Each row
corresponds to a single point in the sequence.
Returns
-------
T : array-like, shape (n, n_components)
Returns the probability of the sample for each state in the model.
"""
_, posteriors = self.score_samples(obs)
return posteriors
def sample(self, n=1, random_state=None):
"""Generate random samples from the model.
Parameters
----------
n : int
Number of samples to generate.
random_state: RandomState or an int seed (0 by default)
A random number generator instance. If None is given, the
object's random_state is used
Returns
-------
(obs, hidden_states)
obs : array_like, length `n` List of samples
hidden_states : array_like, length `n` List of hidden states
"""
if random_state is None:
random_state = self.random_state
random_state = check_random_state(random_state)
startprob_pdf = self.startprob_
startprob_cdf = np.cumsum(startprob_pdf)
transmat_pdf = self.transmat_
transmat_cdf = np.cumsum(transmat_pdf, 1)
# Initial state.
rand = random_state.rand()
currstate = (startprob_cdf > rand).argmax()
hidden_states = [currstate]
obs = [self._generate_sample_from_state(
currstate, random_state=random_state)]
for _ in range(n - 1):
rand = random_state.rand()
currstate = (transmat_cdf[currstate] > rand).argmax()
hidden_states.append(currstate)
obs.append(self._generate_sample_from_state(
currstate, random_state=random_state))
return np.array(obs), np.array(hidden_states, dtype=int)
def fit(self, obs):
"""Estimate model parameters.
An initialization step is performed before entering the EM
algorithm. If you want to avoid this step, pass proper
``init_params`` keyword argument to estimator's constructor.
Parameters
----------
obs : list
List of array-like observation sequences, each of which
has shape (n_i, n_features), where n_i is the length of
the i_th observation.
Notes
-----
In general, `logprob` should be non-decreasing unless
aggressive pruning is used. Decreasing `logprob` is generally
a sign of overfitting (e.g. a covariance parameter getting too
small). You can fix this by getting more training data,
or strengthening the appropriate subclass-specific regularization
parameter.
"""
if self.algorithm not in decoder_algorithms:
self._algorithm = "viterbi"
self._init(obs, self.init_params)
logprob = []
for i in range(self.n_iter):
# Expectation step
stats = self._initialize_sufficient_statistics()
curr_logprob = 0
for seq in obs:
framelogprob = self._compute_log_likelihood(seq)
lpr, fwdlattice = self._do_forward_pass(framelogprob)
bwdlattice = self._do_backward_pass(framelogprob)
gamma = fwdlattice + bwdlattice
posteriors = np.exp(gamma.T - logsumexp(gamma, axis=1)).T
curr_logprob += lpr
self._accumulate_sufficient_statistics(
stats, seq, framelogprob, posteriors, fwdlattice,
bwdlattice, self.params)
logprob.append(curr_logprob)
# Check for convergence.
if i > 0 and abs(logprob[-1] - logprob[-2]) < self.thresh:
break
# Maximization step
self._do_mstep(stats, self.params)
return self
def _get_algorithm(self):
"decoder algorithm"
return self._algorithm
def _set_algorithm(self, algorithm):
if algorithm not in decoder_algorithms:
raise ValueError("algorithm must be one of the decoder_algorithms")
self._algorithm = algorithm
algorithm = property(_get_algorithm, _set_algorithm)
def _get_startprob(self):
"""Mixing startprob for each state."""
return np.exp(self._log_startprob)
def _set_startprob(self, startprob):
if startprob is None:
startprob = np.tile(1.0 / self.n_components, self.n_components)
else:
startprob = np.asarray(startprob, dtype=np.float)
# check if there exists a component whose value is exactly zero
# if so, add a small number and re-normalize
if not np.alltrue(startprob):
normalize(startprob)
if len(startprob) != self.n_components:
raise ValueError('startprob must have length n_components')
if not np.allclose(np.sum(startprob), 1.0):
raise ValueError('startprob must sum to 1.0')
self._log_startprob = np.log(np.asarray(startprob).copy())
startprob_ = property(_get_startprob, _set_startprob)
def _get_transmat(self):
"""Matrix of transition probabilities."""
return np.exp(self._log_transmat)
def _set_transmat(self, transmat):
if transmat is None:
transmat = np.tile(1.0 / self.n_components,
(self.n_components, self.n_components))
# check if there exists a component whose value is exactly zero
# if so, add a small number and re-normalize
if not np.alltrue(transmat):
normalize(transmat, axis=1)
if (np.asarray(transmat).shape
!= (self.n_components, self.n_components)):
raise ValueError('transmat must have shape '
'(n_components, n_components)')
if not np.all(np.allclose(np.sum(transmat, axis=1), 1.0)):
raise ValueError('Rows of transmat must sum to 1.0')
self._log_transmat = np.log(np.asarray(transmat).copy())
underflow_idx = np.isnan(self._log_transmat)
self._log_transmat[underflow_idx] = NEGINF
transmat_ = property(_get_transmat, _set_transmat)
def _do_viterbi_pass(self, framelogprob):
n_observations, n_components = framelogprob.shape
state_sequence, logprob = _hmmc._viterbi(
n_observations, n_components, self._log_startprob,
self._log_transmat, framelogprob)
return logprob, state_sequence
def _do_forward_pass(self, framelogprob):
n_observations, n_components = framelogprob.shape
fwdlattice = np.zeros((n_observations, n_components))
_hmmc._forward(n_observations, n_components, self._log_startprob,
self._log_transmat, framelogprob, fwdlattice)
fwdlattice[fwdlattice <= ZEROLOGPROB] = NEGINF
return logsumexp(fwdlattice[-1]), fwdlattice
def _do_backward_pass(self, framelogprob):
n_observations, n_components = framelogprob.shape
bwdlattice = np.zeros((n_observations, n_components))
_hmmc._backward(n_observations, n_components, self._log_startprob,
self._log_transmat, framelogprob, bwdlattice)
bwdlattice[bwdlattice <= ZEROLOGPROB] = NEGINF
return bwdlattice
def _compute_log_likelihood(self, obs):
pass
def _generate_sample_from_state(self, state, random_state=None):
pass
def _init(self, obs, params):
if 's' in params:
self.startprob_.fill(1.0 / self.n_components)
if 't' in params:
self.transmat_.fill(1.0 / self.n_components)
# Methods used by self.fit()
def _initialize_sufficient_statistics(self):
stats = {'nobs': 0,
'start': np.zeros(self.n_components),
'trans': np.zeros((self.n_components, self.n_components))}
return stats
def _accumulate_sufficient_statistics(self, stats, seq, framelogprob,
posteriors, fwdlattice, bwdlattice,
params):
stats['nobs'] += 1
if 's' in params:
stats['start'] += posteriors[0]
if 't' in params:
n_observations, n_components = framelogprob.shape
# when the sample is of length 1, it contains no transitions
# so there is no reason to update our trans. matrix estimate
if n_observations > 1:
lneta = np.zeros((n_observations - 1, n_components, n_components))
lnP = logsumexp(fwdlattice[-1])
_hmmc._compute_lneta(n_observations, n_components, fwdlattice,
self._log_transmat, bwdlattice, framelogprob,
lnP, lneta)
stats['trans'] += np.exp(np.minimum(logsumexp(lneta, 0), 700))
def _do_mstep(self, stats, params):
# Based on Huang, Acero, Hon, "Spoken Language Processing",
# p. 443 - 445
if self.startprob_prior is None:
self.startprob_prior = 1.0
if self.transmat_prior is None:
self.transmat_prior = 1.0
if 's' in params:
self.startprob_ = normalize(
np.maximum(self.startprob_prior - 1.0 + stats['start'], 1e-20))
if 't' in params:
transmat_ = normalize(
np.maximum(self.transmat_prior - 1.0 + stats['trans'], 1e-20),
axis=1)
self.transmat_ = transmat_
class GaussianHMM(_BaseHMM):
"""Hidden Markov Model with Gaussian emissions
Representation of a hidden Markov model probability distribution.
This class allows for easy evaluation of, sampling from, and
maximum-likelihood estimation of the parameters of a HMM.
.. warning::
The HMM module and its functions will be removed in 0.17
as it no longer falls within the project's scope and API.
Parameters
----------
n_components : int
Number of states.
``_covariance_type`` : string
String describing the type of covariance parameters to
use. Must be one of 'spherical', 'tied', 'diag', 'full'.
Defaults to 'diag'.
Attributes
----------
``_covariance_type`` : string
String describing the type of covariance parameters used by
the model. Must be one of 'spherical', 'tied', 'diag', 'full'.
n_features : int
Dimensionality of the Gaussian emissions.
n_components : int
Number of states in the model.
transmat : array, shape (`n_components`, `n_components`)
Matrix of transition probabilities between states.
startprob : array, shape ('n_components`,)
Initial state occupation distribution.
means : array, shape (`n_components`, `n_features`)
Mean parameters for each state.
covars : array
Covariance parameters for each state. The shape depends on
``_covariance_type``::
(`n_components`,) if 'spherical',
(`n_features`, `n_features`) if 'tied',
(`n_components`, `n_features`) if 'diag',
(`n_components`, `n_features`, `n_features`) if 'full'
random_state: RandomState or an int seed (0 by default)
A random number generator instance
n_iter : int, optional
Number of iterations to perform.
thresh : float, optional
Convergence threshold.
params : string, optional
Controls which parameters are updated in the training
process. Can contain any combination of 's' for startprob,
't' for transmat, 'm' for means, and 'c' for covars.
Defaults to all parameters.
init_params : string, optional
Controls which parameters are initialized prior to
training. Can contain any combination of 's' for
startprob, 't' for transmat, 'm' for means, and 'c' for
covars. Defaults to all parameters.
Examples
--------
>>> from sklearn.hmm import GaussianHMM
>>> GaussianHMM(n_components=2)
... #doctest: +ELLIPSIS +NORMALIZE_WHITESPACE
GaussianHMM(algorithm='viterbi',...
See Also
--------
GMM : Gaussian mixture model
"""
def __init__(self, n_components=1, covariance_type='diag', startprob=None,
transmat=None, startprob_prior=None, transmat_prior=None,
algorithm="viterbi", means_prior=None, means_weight=0,
covars_prior=1e-2, covars_weight=1,
random_state=None, n_iter=10, thresh=1e-2,
params=string.ascii_letters,
init_params=string.ascii_letters):
_BaseHMM.__init__(self, n_components, startprob, transmat,
startprob_prior=startprob_prior,
transmat_prior=transmat_prior, algorithm=algorithm,
random_state=random_state, n_iter=n_iter,
thresh=thresh, params=params,
init_params=init_params)
self._covariance_type = covariance_type
if not covariance_type in ['spherical', 'tied', 'diag', 'full']:
raise ValueError('bad covariance_type')
self.means_prior = means_prior
self.means_weight = means_weight
self.covars_prior = covars_prior
self.covars_weight = covars_weight
@property
def covariance_type(self):
"""Covariance type of the model.
Must be one of 'spherical', 'tied', 'diag', 'full'.
"""
return self._covariance_type
def _get_means(self):
"""Mean parameters for each state."""
return self._means_
def _set_means(self, means):
means = np.asarray(means)
if (hasattr(self, 'n_features')
and means.shape != (self.n_components, self.n_features)):
raise ValueError('means must have shape '
'(n_components, n_features)')
self._means_ = means.copy()
self.n_features = self._means_.shape[1]
means_ = property(_get_means, _set_means)
def _get_covars(self):
"""Return covars as a full matrix."""
if self._covariance_type == 'full':
return self._covars_
elif self._covariance_type == 'diag':
return [np.diag(cov) for cov in self._covars_]
elif self._covariance_type == 'tied':
return [self._covars_] * self.n_components
elif self._covariance_type == 'spherical':
return [np.eye(self.n_features) * f for f in self._covars_]
def _set_covars(self, covars):
covars = np.asarray(covars)
_validate_covars(covars, self._covariance_type, self.n_components)
self._covars_ = covars.copy()
covars_ = property(_get_covars, _set_covars)
def _compute_log_likelihood(self, obs):
return log_multivariate_normal_density(
obs, self._means_, self._covars_, self._covariance_type)
def _generate_sample_from_state(self, state, random_state=None):
if self._covariance_type == 'tied':
cv = self._covars_
else:
cv = self._covars_[state]
return sample_gaussian(self._means_[state], cv, self._covariance_type,
random_state=random_state)
def _init(self, obs, params='stmc'):
super(GaussianHMM, self)._init(obs, params=params)
if (hasattr(self, 'n_features')
and self.n_features != obs[0].shape[1]):
raise ValueError('Unexpected number of dimensions, got %s but '
'expected %s' % (obs[0].shape[1],
self.n_features))
self.n_features = obs[0].shape[1]
if 'm' in params:
self._means_ = cluster.KMeans(
n_clusters=self.n_components).fit(obs[0]).cluster_centers_
if 'c' in params:
cv = np.cov(obs[0].T)
if not cv.shape:
cv.shape = (1, 1)
self._covars_ = distribute_covar_matrix_to_match_covariance_type(
cv, self._covariance_type, self.n_components)
self._covars_[self._covars_ == 0] = 1e-5
def _initialize_sufficient_statistics(self):
stats = super(GaussianHMM, self)._initialize_sufficient_statistics()
stats['post'] = np.zeros(self.n_components)
stats['obs'] = np.zeros((self.n_components, self.n_features))
stats['obs**2'] = np.zeros((self.n_components, self.n_features))
stats['obs*obs.T'] = np.zeros((self.n_components, self.n_features,
self.n_features))
return stats
def _accumulate_sufficient_statistics(self, stats, obs, framelogprob,
posteriors, fwdlattice, bwdlattice,
params):
super(GaussianHMM, self)._accumulate_sufficient_statistics(
stats, obs, framelogprob, posteriors, fwdlattice, bwdlattice,
params)
if 'm' in params or 'c' in params:
stats['post'] += posteriors.sum(axis=0)
stats['obs'] += np.dot(posteriors.T, obs)
if 'c' in params:
if self._covariance_type in ('spherical', 'diag'):
stats['obs**2'] += np.dot(posteriors.T, obs ** 2)
elif self._covariance_type in ('tied', 'full'):
for t, o in enumerate(obs):
obsobsT = np.outer(o, o)
for c in range(self.n_components):
stats['obs*obs.T'][c] += posteriors[t, c] * obsobsT
def _do_mstep(self, stats, params):
super(GaussianHMM, self)._do_mstep(stats, params)
# Based on Huang, Acero, Hon, "Spoken Language Processing",
# p. 443 - 445
denom = stats['post'][:, np.newaxis]
if 'm' in params:
prior = self.means_prior
weight = self.means_weight
if prior is None:
weight = 0
prior = 0
self._means_ = (weight * prior + stats['obs']) / (weight + denom)
if 'c' in params:
covars_prior = self.covars_prior
covars_weight = self.covars_weight
if covars_prior is None:
covars_weight = 0
covars_prior = 0
means_prior = self.means_prior
means_weight = self.means_weight
if means_prior is None:
means_weight = 0
means_prior = 0
meandiff = self._means_ - means_prior
if self._covariance_type in ('spherical', 'diag'):
cv_num = (means_weight * (meandiff) ** 2
+ stats['obs**2']
- 2 * self._means_ * stats['obs']
+ self._means_ ** 2 * denom)
cv_den = max(covars_weight - 1, 0) + denom
self._covars_ = (covars_prior + cv_num) / np.maximum(cv_den, 1e-5)
if self._covariance_type == 'spherical':
self._covars_ = np.tile(
self._covars_.mean(1)[:, np.newaxis],
(1, self._covars_.shape[1]))
elif self._covariance_type in ('tied', 'full'):
cvnum = np.empty((self.n_components, self.n_features,
self.n_features))
for c in range(self.n_components):
obsmean = np.outer(stats['obs'][c], self._means_[c])
cvnum[c] = (means_weight * np.outer(meandiff[c],
meandiff[c])
+ stats['obs*obs.T'][c]
- obsmean - obsmean.T
+ np.outer(self._means_[c], self._means_[c])
* stats['post'][c])
cvweight = max(covars_weight - self.n_features, 0)
if self._covariance_type == 'tied':
self._covars_ = ((covars_prior + cvnum.sum(axis=0)) /
(cvweight + stats['post'].sum()))
elif self._covariance_type == 'full':
self._covars_ = ((covars_prior + cvnum) /
(cvweight + stats['post'][:, None, None]))
def fit(self, obs):
"""Estimate model parameters.
An initialization step is performed before entering the EM
algorithm. If you want to avoid this step, pass proper
``init_params`` keyword argument to estimator's constructor.
Parameters
----------
obs : list
List of array-like observation sequences, each of which
has shape (n_i, n_features), where n_i is the length of
the i_th observation.
Notes
-----
In general, `logprob` should be non-decreasing unless
aggressive pruning is used. Decreasing `logprob` is generally
a sign of overfitting (e.g. the covariance parameter on one or
more components becomminging too small). You can fix this by getting
more training data, or increasing covars_prior.
"""
return super(GaussianHMM, self).fit(obs)
class MultinomialHMM(_BaseHMM):
"""Hidden Markov Model with multinomial (discrete) emissions
.. warning::
The HMM module and its functions will be removed in 0.17
as it no longer falls within the project's scope and API.
Attributes
----------
n_components : int
Number of states in the model.
n_symbols : int
Number of possible symbols emitted by the model (in the observations).
transmat : array, shape (`n_components`, `n_components`)
Matrix of transition probabilities between states.
startprob : array, shape ('n_components`,)
Initial state occupation distribution.
emissionprob : array, shape ('n_components`, 'n_symbols`)
Probability of emitting a given symbol when in each state.
random_state: RandomState or an int seed (0 by default)
A random number generator instance
n_iter : int, optional
Number of iterations to perform.
thresh : float, optional
Convergence threshold.
params : string, optional
Controls which parameters are updated in the training
process. Can contain any combination of 's' for startprob,
't' for transmat, 'e' for emmissionprob.
Defaults to all parameters.
init_params : string, optional
Controls which parameters are initialized prior to
training. Can contain any combination of 's' for
startprob, 't' for transmat, 'e' for emmissionprob.
Defaults to all parameters.
Examples
--------
>>> from sklearn.hmm import MultinomialHMM
>>> MultinomialHMM(n_components=2)
... #doctest: +ELLIPSIS +NORMALIZE_WHITESPACE
MultinomialHMM(algorithm='viterbi',...
See Also
--------
GaussianHMM : HMM with Gaussian emissions
"""
def __init__(self, n_components=1, startprob=None, transmat=None,
startprob_prior=None, transmat_prior=None,
algorithm="viterbi", random_state=None,
n_iter=10, thresh=1e-2, params=string.ascii_letters,
init_params=string.ascii_letters):
"""Create a hidden Markov model with multinomial emissions.
Parameters
----------
n_components : int
Number of states.
"""
_BaseHMM.__init__(self, n_components, startprob, transmat,
startprob_prior=startprob_prior,
transmat_prior=transmat_prior,
algorithm=algorithm,
random_state=random_state,
n_iter=n_iter,
thresh=thresh,
params=params,
init_params=init_params)
def _get_emissionprob(self):
"""Emission probability distribution for each state."""
return np.exp(self._log_emissionprob)
def _set_emissionprob(self, emissionprob):
emissionprob = np.asarray(emissionprob)
if hasattr(self, 'n_symbols') and \
emissionprob.shape != (self.n_components, self.n_symbols):
raise ValueError('emissionprob must have shape '
'(n_components, n_symbols)')