forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathencoder.py
742 lines (641 loc) · 32.6 KB
/
encoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.nn.utils import weight_norm
__all__ = [
'BoWEncoder', 'CNNEncoder', 'GRUEncoder', 'LSTMEncoder', 'RNNEncoder',
'TCNEncoder'
]
class BoWEncoder(nn.Layer):
"""
A `BoWEncoder` takes as input a sequence of vectors and returns a
single vector, which simply sums the embeddings of a sequence across the time dimension.
The input to this module is of shape `(batch_size, num_tokens, emb_dim)`,
and the output is of shape `(batch_size, emb_dim)`.
Args:
emb_dim(int): It is the input dimension to the encoder.
"""
def __init__(self, emb_dim):
super().__init__()
self._emb_dim = emb_dim
def get_input_dim(self):
"""
Returns the dimension of the vector input for each element in the sequence input
to a `BoWEncoder`. This is not the shape of the input tensor, but the
last element of that shape.
"""
return self._emb_dim
def get_output_dim(self):
"""
Returns the dimension of the final vector output by this `BoWEncoder`. This is not
the shape of the returned tensor, but the last element of that shape.
"""
return self._emb_dim
def forward(self, inputs, mask=None):
"""
It simply sums the embeddings of a sequence across the time dimension.
Args:
inputs (paddle.Tensor): Shape as `(batch_size, num_tokens, emb_dim)`
mask (obj: `paddle.Tensor`, optional, defaults to `None`): Shape same as `inputs`. Its each elements identify whether is padding token or not.
If True, not padding token. If False, padding token.
Returns:
summed (paddle.Tensor): Shape of `(batch_size, emb_dim)`. The result vector of BagOfEmbedding.
"""
if mask is not None:
inputs = inputs * mask
# Shape: (batch_size, embedding_dim)
summed = inputs.sum(axis=1)
return summed
class CNNEncoder(nn.Layer):
"""
A `CNNEncoder` takes as input a sequence of vectors and returns a
single vector, a combination of multiple convolution layers and max pooling layers.
The input to this module is of shape `(batch_size, num_tokens, emb_dim)`,
and the output is of shape `(batch_size, ouput_dim)` or `(batch_size, len(ngram_filter_sizes) * num_filter)`.
The CNN has one convolution layer for each ngram filter size. Each convolution operation gives
out a vector of size num_filter. The number of times a convolution layer will be used
is `num_tokens - ngram_size + 1`. The corresponding maxpooling layer aggregates all these
outputs from the convolution layer and outputs the max.
This operation is repeated for every ngram size passed, and consequently the dimensionality of
the output after maxpooling is `len(ngram_filter_sizes) * num_filter`. This then gets
(optionally) projected down to a lower dimensional output, specified by `output_dim`.
We then use a fully connected layer to project in back to the desired output_dim. For more
details, refer to "A Sensitivity Analysis of (and Practitioners’ Guide to) Convolutional Neural
Networks for Sentence Classification", Zhang and Wallace 2016, particularly Figure 1.
ref: https://arxiv.org/abs/1510.03820
Args:
emb_dim(int):
This is the input dimension to the encoder.
num_filter(int):
This is the output dim for each convolutional layer, which is the number of "filters"
learned by that layer.
ngram_filter_sizes(Tuple[int]):
This specifies both the number of convolutional layers we will create and their sizes. The
default of `(2, 3, 4, 5)` will have four convolutional layers, corresponding to encoding
ngrams of size 2 to 5 with some number of filters.
conv_layer_activation(str):
Activation to use after the convolution layers.
output_dim(int):
After doing convolutions and pooling, we'll project the collected features into a vector of
this size. If this value is `None`, we will just return the result of the max pooling,
giving an output of shape `len(ngram_filter_sizes) * num_filter`.
"""
def __init__(self,
emb_dim,
num_filter,
ngram_filter_sizes=(2, 3, 4, 5),
conv_layer_activation=nn.Tanh(),
output_dim=None,
**kwargs):
super().__init__()
self._emb_dim = emb_dim
self._num_filter = num_filter
self._ngram_filter_sizes = ngram_filter_sizes
self._activation = conv_layer_activation
self._output_dim = output_dim
self.convs = paddle.nn.LayerList([
nn.Conv2D(
in_channels=1,
out_channels=self._num_filter,
kernel_size=(i, self._emb_dim),
**kwargs) for i in self._ngram_filter_sizes
])
maxpool_output_dim = self._num_filter * len(self._ngram_filter_sizes)
if self._output_dim:
self.projection_layer = nn.Linear(maxpool_output_dim,
self._output_dim)
else:
self.projection_layer = None
self._output_dim = maxpool_output_dim
def get_input_dim(self):
"""
Returns the dimension of the vector input for each element in the sequence input
to a `CNNEncoder`. This is not the shape of the input tensor, but the
last element of that shape.
"""
return self._emb_dim
def get_output_dim(self):
"""
Returns the dimension of the final vector output by this `CNNEncoder`. This is not
the shape of the returned tensor, but the last element of that shape.
"""
return self._output_dim
def forward(self, inputs, mask=None):
"""
The combination of multiple convolution layers and max pooling layers.
Args:
inputs (paddle.Tensor): Shape as `(batch_size, num_tokens, emb_dim)`
mask (obj: `paddle.Tensor`, optional, defaults to `None`): Shape same as `inputs`.
Its each elements identify whether is padding token or not.
If True, not padding token. If False, padding token.
Returns:
result (paddle.Tensor): If output_dim is None, the result shape
is of `(batch_size, output_dim)`; if not, the result shape
is of `(batch_size, len(ngram_filter_sizes) * num_filter)`.
"""
if mask is not None:
inputs = inputs * mask
# Shape: (batch_size, 1, num_tokens, emb_dim) = (N, C, H, W)
inputs = inputs.unsqueeze(1)
# If output_dim is None, result shape of (batch_size, len(ngram_filter_sizes) * num_filter));
# else, result shape of (batch_size, output_dim).
convs_out = [
self._activation(conv(inputs)).squeeze(3) for conv in self.convs
]
maxpool_out = [
F.adaptive_max_pool1d(
t, output_size=1).squeeze(2) for t in convs_out
]
result = paddle.concat(maxpool_out, axis=1)
if self.projection_layer is not None:
result = self.projection_layer(result)
return result
class GRUEncoder(nn.Layer):
"""
A GRUEncoder takes as input a sequence of vectors and returns a
single vector, which is a combination of multiple GRU layers.
The input to this module is of shape `(batch_size, num_tokens, input_size)`,
The output is of shape `(batch_size, hidden_size*2)` if GRU is bidirection;
If not, output is of shape `(batch_size, hidden_size)`.
Paddle's GRU have two outputs: the hidden state for every time step at last layer,
and the hidden state at the last time step for every layer.
If `pooling_type` is None, we perform the pooling on the hidden state of every time
step at last layer to create a single vector. If not None, we use the hidden state
of the last time step at last layer as a single output (shape of `(batch_size, hidden_size)`);
And if direction is bidirection, the we concat the hidden state of the last forward
gru and backward gru layer to create a single vector (shape of `(batch_size, hidden_size*2)`).
Args:
input_size (obj:`int`, required): The number of expected features in the input (the last dimension).
hidden_size (obj:`int`, required): The number of features in the hidden state.
num_layers (obj:`int`, optional, defaults to 1): Number of recurrent layers.
E.g., setting num_layers=2 would mean stacking two GRUs together to form a stacked GRU,
with the second GRU taking in outputs of the first GRU and computing the final results.
direction (obj:`str`, optional, defaults to obj:`forward`): The direction of the network.
It can be `forward` and `bidirect` (it means bidirection network).
If `biderect`, it is a birectional GRU, and returns the concat output from both directions.
dropout (obj:`float`, optional, defaults to 0.0): If non-zero, introduces a Dropout layer
on the outputs of each GRU layer except the last layer, with dropout probability equal to dropout.
pooling_type (obj: `str`, optional, defaults to obj:`None`): If `pooling_type` is None,
then the GRUEncoder will return the hidden state of the last time step at last layer as a single vector.
If pooling_type is not None, it must be one of `sum`, `max` and `mean`. Then it will be pooled on
the GRU output (the hidden state of every time step at last layer) to create a single vector.
"""
def __init__(self,
input_size,
hidden_size,
num_layers=1,
direction="forward",
dropout=0.0,
pooling_type=None,
**kwargs):
super().__init__()
self._input_size = input_size
self._hidden_size = hidden_size
self._direction = direction
self._pooling_type = pooling_type
self.gru_layer = nn.GRU(input_size=input_size,
hidden_size=hidden_size,
num_layers=num_layers,
direction=direction,
dropout=dropout,
**kwargs)
def get_input_dim(self):
"""
Returns the dimension of the vector input for each element in the sequence input
to a `GRUEncoder`. This is not the shape of the input tensor, but the
last element of that shape.
"""
return self._input_size
def get_output_dim(self):
"""
Returns the dimension of the final vector output by this `GRUEncoder`. This is not
the shape of the returned tensor, but the last element of that shape.
"""
if self._direction == "bidirect":
return self._hidden_size * 2
else:
return self._hidden_size
def forward(self, inputs, sequence_length):
"""
GRUEncoder takes the a sequence of vectors and and returns a
single vector, which is a combination of multiple GRU layers.
The input to this module is of shape `(batch_size, num_tokens, input_size)`,
The output is of shape `(batch_size, hidden_size*2)` if GRU is bidirection;
If not, output is of shape `(batch_size, hidden_size)`.
Args:
inputs (paddle.Tensor): Shape as `(batch_size, num_tokens, input_size)`.
sequence_length (paddle.Tensor): Shape as `(batch_size)`.
Returns:
last_hidden (paddle.Tensor): Shape as `(batch_size, hidden_size)`.
The hidden state at the last time step for every layer.
"""
encoded_text, last_hidden = self.gru_layer(
inputs, sequence_length=sequence_length)
if not self._pooling_type:
# We exploit the `last_hidden` (the hidden state at the last time step for every layer)
# to create a single vector.
# If gru is not bidirection, then output is the hidden state of the last time step
# at last layer. Output is shape of `(batch_size, hidden_size)`.
# If gru is bidirection, then output is concatenation of the forward and backward hidden state
# of the last time step at last layer. Output is shape of `(batch_size, hidden_size*2)`.
if self._direction != 'bidirect':
output = last_hidden[-1, :, :]
else:
output = paddle.concat(
(last_hidden[-2, :, :], last_hidden[-1, :, :]), axis=1)
else:
# We exploit the `encoded_text` (the hidden state at the every time step for last layer)
# to create a single vector. We perform pooling on the encoded text.
# The output shape is `(batch_size, hidden_size*2)` if use bidirectional GRU,
# otherwise the output shape is `(batch_size, hidden_size*2)`.
if self._pooling_type == 'sum':
output = paddle.sum(encoded_text, axis=1)
elif self._pooling_type == 'max':
output = paddle.max(encoded_text, axis=1)
elif self._pooling_type == 'mean':
output = paddle.mean(encoded_text, axis=1)
else:
raise RuntimeError(
"Unexpected pooling type %s ."
"Pooling type must be one of sum, max and mean." %
self._pooling_type)
return output
class LSTMEncoder(nn.Layer):
"""
A LSTMEncoder takes as input a sequence of vectors and returns a
single vector, which is a combination of multiple LSTM layers.
The input to this module is of shape `(batch_size, num_tokens, input_size)`,
The output is of shape `(batch_size, hidden_size*2)` if LSTM is bidirection;
If not, output is of shape `(batch_size, hidden_size)`.
Paddle's LSTM have two outputs: the hidden state for every time step at last layer,
and the hidden state and cell at the last time step for every layer.
If `pooling_type` is None, we perform the pooling on the hidden state of every time
step at last layer to create a single vector. If not None, we use the hidden state
of the last time step at last layer as a single output (shape of `(batch_size, hidden_size)`);
And if direction is bidirection, the we concat the hidden state of the last forward
lstm and backward lstm layer to create a single vector (shape of `(batch_size, hidden_size*2)`).
Args:
input_size (int): The number of expected features in the input (the last dimension).
hidden_size (int): The number of features in the hidden state.
num_layers (int): Number of recurrent layers.
E.g., setting num_layers=2 would mean stacking two LSTMs together to form a stacked LSTM,
with the second LSTM taking in outputs of the first LSTM and computing the final results.
direction (str): The direction of the network.
It can be `forward` or `bidirect` (it means bidirection network).
If `biderect`, it is a birectional LSTM, and returns the concat output from both directions.
dropout (float): If non-zero, introduces a Dropout layer
on the outputs of each LSTM layer except the last layer, with dropout probability equal to dropout.
pooling_type (str): If `pooling_type` is None,
then the LSTMEncoder will return the hidden state of the last time step at last layer as a single vector.
If pooling_type is not None, it must be one of `sum`, `max` and `mean`. Then it will be pooled on
the LSTM output (the hidden state of every time step at last layer) to create a single vector.
"""
def __init__(self,
input_size,
hidden_size,
num_layers=1,
direction="forward",
dropout=0.0,
pooling_type=None,
**kwargs):
super().__init__()
self._input_size = input_size
self._hidden_size = hidden_size
self._direction = direction
self._pooling_type = pooling_type
self.lstm_layer = nn.LSTM(
input_size=input_size,
hidden_size=hidden_size,
num_layers=num_layers,
direction=direction,
dropout=dropout,
**kwargs)
def get_input_dim(self):
"""
Returns the dimension of the vector input for each element in the sequence input
to a `LSTMEncoder`. This is not the shape of the input tensor, but the
last element of that shape.
"""
return self._input_size
def get_output_dim(self):
"""
Returns the dimension of the final vector output by this `LSTMEncoder`. This is not
the shape of the returned tensor, but the last element of that shape.
"""
if self._direction == "bidirect":
return self._hidden_size * 2
else:
return self._hidden_size
def forward(self, inputs, sequence_length):
"""
LSTMEncoder takes the a sequence of vectors and and returns a
single vector, which is a combination of multiple LSTM layers.
The input to this module is of shape `(batch_size, num_tokens, input_size)`,
The output is of shape `(batch_size, hidden_size*2)` if LSTM is bidirection;
If not, output is of shape `(batch_size, hidden_size)`.
Args:
inputs (paddle.Tensor): Shape as `(batch_size, num_tokens, input_size)`.
sequence_length (paddle.Tensor): Shape as `(batch_size)`.
Returns:
last_hidden (paddle.Tensor): Shape as `(batch_size, hidden_size)`.
The hidden state at the last time step for every layer.
"""
encoded_text, (last_hidden, last_cell) = self.lstm_layer(
inputs, sequence_length=sequence_length)
if not self._pooling_type:
# We exploit the `last_hidden` (the hidden state at the last time step for every layer)
# to create a single vector.
# If lstm is not bidirection, then output is the hidden state of the last time step
# at last layer. Output is shape of `(batch_size, hidden_size)`.
# If lstm is bidirection, then output is concatenation of the forward and backward hidden state
# of the last time step at last layer. Output is shape of `(batch_size, hidden_size*2)`.
if self._direction != 'bidirect':
output = last_hidden[-1, :, :]
else:
output = paddle.concat(
(last_hidden[-2, :, :], last_hidden[-1, :, :]), axis=1)
else:
# We exploit the `encoded_text` (the hidden state at the every time step for last layer)
# to create a single vector. We perform pooling on the encoded text.
# The output shape is `(batch_size, hidden_size*2)` if use bidirectional LSTM,
# otherwise the output shape is `(batch_size, hidden_size*2)`.
if self._pooling_type == 'sum':
output = paddle.sum(encoded_text, axis=1)
elif self._pooling_type == 'max':
output = paddle.max(encoded_text, axis=1)
elif self._pooling_type == 'mean':
output = paddle.mean(encoded_text, axis=1)
else:
raise RuntimeError(
"Unexpected pooling type %s ."
"Pooling type must be one of sum, max and mean." %
self._pooling_type)
return output
class RNNEncoder(nn.Layer):
"""
A RNNEncoder takes as input a sequence of vectors and returns a
single vector, which is a combination of multiple RNN layers.
The input to this module is of shape `(batch_size, num_tokens, input_size)`,
The output is of shape `(batch_size, hidden_size*2)` if RNN is bidirection;
If not, output is of shape `(batch_size, hidden_size)`.
Paddle's RNN have two outputs: the hidden state for every time step at last layer,
and the hidden state at the last time step for every layer.
If `pooling_type` is None, we perform the pooling on the hidden state of every time
step at last layer to create a single vector. If not None, we use the hidden state
of the last time step at last layer as a single output (shape of `(batch_size, hidden_size)`);
And if direction is bidirection, the we concat the hidden state of the last forward
rnn and backward rnn layer to create a single vector (shape of `(batch_size, hidden_size*2)`).
Args:
input_size (obj:`int`, required): The number of expected features in the input (the last dimension).
hidden_size (obj:`int`, required): The number of features in the hidden state.
num_layers (obj:`int`, optional, defaults to 1): Number of recurrent layers.
E.g., setting num_layers=2 would mean stacking two RNNs together to form a stacked RNN,
with the second RNN taking in outputs of the first RNN and computing the final results.
direction (obj:`str`, optional, defaults to obj:`forward`): The direction of the network.
It can be "forward" and "bidirect" (it means bidirection network).
If `biderect`, it is a birectional RNN, and returns the concat output from both directions.
dropout (obj:`float`, optional, defaults to 0.0): If non-zero, introduces a Dropout layer
on the outputs of each RNN layer except the last layer, with dropout probability equal to dropout.
pooling_type (obj: `str`, optional, defaults to obj:`None`): If `pooling_type` is None,
then the RNNEncoder will return the hidden state of the last time step at last layer as a single vector.
If pooling_type is not None, it must be one of `sum`, `max` and `mean`. Then it will be pooled on
the RNN output (the hidden state of every time step at last layer) to create a single vector.
"""
def __init__(self,
input_size,
hidden_size,
num_layers=1,
direction="forward",
dropout=0.0,
pooling_type=None,
**kwargs):
super().__init__()
self._input_size = input_size
self._hidden_size = hidden_size
self._direction = direction
self._pooling_type = pooling_type
self.rnn_layer = nn.SimpleRNN(
input_size=input_size,
hidden_size=hidden_size,
num_layers=num_layers,
direction=direction,
dropout=dropout,
**kwargs)
def get_input_dim(self):
"""
Returns the dimension of the vector input for each element in the sequence input
to a `RNNEncoder`. This is not the shape of the input tensor, but the
last element of that shape.
"""
return self._input_size
def get_output_dim(self):
"""
Returns the dimension of the final vector output by this `RNNEncoder`. This is not
the shape of the returned tensor, but the last element of that shape.
"""
if self._direction == "bidirect":
return self._hidden_size * 2
else:
return self._hidden_size
def forward(self, inputs, sequence_length):
"""
RNNEncoder takes the a sequence of vectors and and returns a
single vector, which is a combination of multiple RNN layers.
The input to this module is of shape `(batch_size, num_tokens, input_size)`,
The output is of shape `(batch_size, hidden_size*2)` if RNN is bidirection;
If not, output is of shape `(batch_size, hidden_size)`.
Args:
inputs (paddle.Tensor): Shape as `(batch_size, num_tokens, input_size)`.
sequence_length (paddle.Tensor): Shape as `(batch_size)`.
Returns:
last_hidden (paddle.Tensor): Shape as `(batch_size, hidden_size)`.
The hidden state at the last time step for every layer.
"""
encoded_text, last_hidden = self.rnn_layer(
inputs, sequence_length=sequence_length)
if not self._pooling_type:
# We exploit the `last_hidden` (the hidden state at the last time step for every layer)
# to create a single vector.
# If rnn is not bidirection, then output is the hidden state of the last time step
# at last layer. Output is shape of `(batch_size, hidden_size)`.
# If rnn is bidirection, then output is concatenation of the forward and backward hidden state
# of the last time step at last layer. Output is shape of `(batch_size, hidden_size*2)`.
if self._direction != 'bidirect':
output = last_hidden[-1, :, :]
else:
output = paddle.concat(
(last_hidden[-2, :, :], last_hidden[-1, :, :]), axis=1)
else:
# We exploit the `encoded_text` (the hidden state at the every time step for last layer)
# to create a single vector. We perform pooling on the encoded text.
# The output shape is `(batch_size, hidden_size*2)` if use bidirectional RNN,
# otherwise the output shape is `(batch_size, hidden_size*2)`.
if self._pooling_type == 'sum':
output = paddle.sum(encoded_text, axis=1)
elif self._pooling_type == 'max':
output = paddle.max(encoded_text, axis=1)
elif self._pooling_type == 'mean':
output = paddle.mean(encoded_text, axis=1)
else:
raise RuntimeError(
"Unexpected pooling type %s ."
"Pooling type must be one of sum, max and mean." %
self._pooling_type)
return output
class Chomp1d(nn.Layer):
"""
Remove the elements on the right.
Args:
chomp_size ([int]): The number of elements removed.
"""
def __init__(self, chomp_size):
super(Chomp1d, self).__init__()
self.chomp_size = chomp_size
def forward(self, x):
return x[:, :, :-self.chomp_size]
class TemporalBlock(nn.Layer):
"""
The TCN block, consists of dilated causal conv, relu and residual block.
See the Figure 1(b) in https://arxiv.org/pdf/1803.01271.pdf for more details.
Args:
n_inputs ([int]): The number of channels in the input tensor.
n_outputs ([int]): The number of filters.
kernel_size ([int]): The filter size.
stride ([int]): The stride size.
dilation ([int]): The dilation size.
padding ([int]): The size of zeros to be padded.
dropout (float, optional): Probability of dropout the units. Defaults to 0.2.
"""
def __init__(self,
n_inputs,
n_outputs,
kernel_size,
stride,
dilation,
padding,
dropout=0.2):
super(TemporalBlock, self).__init__()
self.conv1 = weight_norm(
nn.Conv1D(
n_inputs,
n_outputs,
kernel_size,
stride=stride,
padding=padding,
dilation=dilation))
# Chomp1d is used to make sure the network is causal.
# We pad by (k-1)*d on the two sides of the input for convolution,
# and then use Chomp1d to remove the (k-1)*d output elements on the right.
self.chomp1 = Chomp1d(padding)
self.relu1 = nn.ReLU()
self.dropout1 = nn.Dropout(dropout)
self.conv2 = weight_norm(
nn.Conv1D(
n_outputs,
n_outputs,
kernel_size,
stride=stride,
padding=padding,
dilation=dilation))
self.chomp2 = Chomp1d(padding)
self.relu2 = nn.ReLU()
self.dropout2 = nn.Dropout(dropout)
self.net = nn.Sequential(self.conv1, self.chomp1, self.relu1,
self.dropout1, self.conv2, self.chomp2,
self.relu2, self.dropout2)
self.downsample = nn.Conv1D(n_inputs, n_outputs,
1) if n_inputs != n_outputs else None
self.relu = nn.ReLU()
self.init_weights()
def init_weights(self):
self.conv1.weight.set_value(
paddle.tensor.normal(0.0, 0.01, self.conv1.weight.shape))
self.conv2.weight.set_value(
paddle.tensor.normal(0.0, 0.01, self.conv2.weight.shape))
if self.downsample is not None:
self.downsample.weight.set_value(
paddle.tensor.normal(0.0, 0.01, self.downsample.weight.shape))
def forward(self, x):
out = self.net(x)
res = x if self.downsample is None else self.downsample(x)
return self.relu(out + res)
class TCNEncoder(nn.Layer):
r"""
A `TCNEncoder` takes as input a sequence of vectors and returns a
single vector, which is the last one time step in the feature map.
The input to this module is of shape `(batch_size, num_tokens, input_size)`,
and the output is of shape `(batch_size, num_channels[-1])` with a receptive
filed:
.. math::
receptive filed = $2 * \sum_{i=0}^{len(num\_channels)-1}2^i(kernel\_size-1)$.
Temporal Convolutional Networks is a simple convolutional architecture. It outperforms canonical recurrent networks
such as LSTMs in many tasks. See https://arxiv.org/pdf/1803.01271.pdf for more details.
Args:
input_size (int): The number of expected features in the input (the last dimension).
num_channels (list): The number of channels in different layer.
kernel_size (int): The kernel size. Defaults to 2.
dropout (float): The dropout probability. Defaults to 0.2.
"""
def __init__(self, input_size, num_channels, kernel_size=2, dropout=0.2):
super(TCNEncoder, self).__init__()
self._input_size = input_size
self._output_dim = num_channels[-1]
layers = nn.LayerList()
num_levels = len(num_channels)
for i in range(num_levels):
dilation_size = 2**i
in_channels = input_size if i == 0 else num_channels[i - 1]
out_channels = num_channels[i]
layers.append(
TemporalBlock(
in_channels,
out_channels,
kernel_size,
stride=1,
dilation=dilation_size,
padding=(kernel_size - 1) * dilation_size,
dropout=dropout))
self.network = nn.Sequential(*layers)
def get_input_dim(self):
"""
Returns the dimension of the vector input for each element in the sequence input
to a `TCNEncoder`. This is not the shape of the input tensor, but the
last element of that shape.
"""
return self._input_size
def get_output_dim(self):
"""
Returns the dimension of the final vector output by this `TCNEncoder`. This is not
the shape of the returned tensor, but the last element of that shape.
"""
return self._output_dim
def forward(self, inputs):
r"""
TCNEncoder takes as input a sequence of vectors and returns a
single vector, which is the last one time step in the feature map.
The input to this module is of shape `(batch_size, num_tokens, input_size)`,
and the output is of shape `(batch_size, num_channels[-1])` with a receptive
filed:
.. math::
receptive filed = $2 * \sum_{i=0}^{len(num\_channels)-1}2^i(kernel\_size-1)$.
Args:
inputs (paddle.Tensor): The input tensor with shape `[batch_size, num_tokens, input_size]`.
Returns:
output (paddle.Tensor): The output tensor with shape `[batch_size, num_channels[-1]]`.
"""
inputs_t = inputs.transpose([0, 2, 1])
output = self.network(inputs_t).transpose([2, 0, 1])[-1]
return output