diff --git a/README.md b/README.md index df6d5ea..15d1841 100644 --- a/README.md +++ b/README.md @@ -6,9 +6,10 @@ This is rapidly changing research software. We make no guarantees of maintaining ## Quickstart -### 1. Clone this repository and install dependencies +### 1. Install -Assuming [conda](https://docs.conda.io/en/latest/) is available, run +Clone this repository. Then assuming [conda](https://docs.conda.io/en/latest/) +is available, run ``` make create_environment ``` @@ -18,20 +19,24 @@ You may verify installation by running `pytest fme/`. ### 2. Download data and checkpoint -These are available via a public +The checkpoint and a 1-year subsample of the validation data are available at +[this Zenodo repository](https://zenodo.org/doi/10.5281/zenodo.10791086). +Download these to your local filesystem. + +Alternatively, if interested in the complete dataset, this is available via a public [requester pays](https://cloud.google.com/storage/docs/requester-pays) -Google Cloud Storage bucket. The checkpoint can be downloaded with: -``` -gsutil -u YOUR_GCP_PROJECT cp gs://ai2cm-public-requester-pays/2023-11-29-ai2-climate-emulator-v1/checkpoints/ace_ckpt.tar . -``` -Download the 10-year validation data (approx. 190GB; can also download a portion only, -but it is required to download enough data to span the desired prediction period): +Google Cloud Storage bucket. For example, the 10-year validation data (approx. 190GB) +can be downloaded with: ``` gsutil -m -u YOUR_GCP_PROJECT cp -r gs://ai2cm-public-requester-pays/2023-11-29-ai2-climate-emulator-v1/data/repeating-climSST-1deg-netCDFs/validation . ``` +It is possible to download a portion of the dataset only, but it is necessary to have +enough data to span the desired prediction period. The checkpoint is also available on GCS at +`gs://ai2cm-public-requester-pays/2023-11-29-ai2-climate-emulator-v1/checkpoints/ace_ckpt.tar`. -### 3. Update the paths in the [example config](examples/config-inference.yaml). -Then in the `fme` conda environment, run inference with: +### 3. Update configuration and run +Update the paths in the [example config](examples/config-inference.yaml). Then in the +`fme` conda environment, run inference with: ``` python -m fme.fcn_training.inference.inference examples/config-inference.yaml ``` diff --git a/examples/config-inference.yaml b/examples/config-inference.yaml index fb772f0..4c5f99e 100644 --- a/examples/config-inference.yaml +++ b/examples/config-inference.yaml @@ -11,7 +11,7 @@ logging: entity: your_wandb_entity validation_data: batch_size: 1 - data_path: /path/to/validation/ic_0011 + data_path: /path/to/data/directory # time-ordered netCDFs ending in .nc data_type: xarray num_data_workers: 4 n_samples: 1