forked from AbanteAI/archive-old-cli-mentat
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbenchmark_run_summary.py
88 lines (76 loc) · 2.92 KB
/
benchmark_run_summary.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import json
import os
from pathlib import Path
from typing import Optional, Tuple
import attr
from benchmarks.benchmark_result import BenchmarkResult
class BenchmarkRunSummary:
def __init__(
self,
summary: dict[str, Tuple[int | float | str, float]],
metadata: Optional[dict] = None,
):
self.summary = summary
self.metadata = metadata
self.display_string = self.display_string()
def formatted_summary(self) -> dict[str, str]:
formatted = {}
total = self.summary["count"][0]
for field in attr.fields(BenchmarkResult):
if "aggregation" in field.metadata:
name = field.name
value, total_set = self.summary[name]
if total_set == 0:
continue
percent_set_display = ""
if total_set < total:
percent_set_display = f" ({total_set}/{total})"
formatted_value = ""
aggregation_type = field.metadata["aggregation"]
if aggregation_type == "average":
formatted_name = f"{name} (avg)"
else:
formatted_name = name
if isinstance(value, float):
formatted_value = f"{value:.2f}"
elif isinstance(value, dict):
formatted_value = ", ".join(f"{k}: {v}" for k, v in value.items())
else:
formatted_value = str(value)
# Add units based on aggregation type
if aggregation_type == "sum" and "cost" in formatted_name:
formatted[formatted_name] = (
f"${formatted_value} {percent_set_display}"
)
elif aggregation_type == "percent":
formatted[formatted_name] = (
f"{formatted_value}% {percent_set_display}"
)
else:
formatted[formatted_name] = (
f"{formatted_value} {percent_set_display}"
)
return formatted
def display_string(self) -> str:
return ", ".join(
f"{name}: {value}" for name, value in self.formatted_summary().items()
)
def to_json(self) -> str:
return json.dumps(
{
"summary": self.summary,
"metadata": self.metadata,
},
indent=4,
)
@classmethod
def load_json(cls, json_str: str) -> "BenchmarkRunSummary":
data = json.loads(json_str)
return cls(data["summary"], data["metadata"])
@classmethod
def load_file(cls, file: Path) -> "BenchmarkRunSummary":
file_name = os.path.basename(file)
with open(file, "r") as f:
summary = cls.load_json(f.read())
summary.metadata["file"] = file_name # Used for links
return summary