Skip to content

Latest commit

 

History

History
119 lines (86 loc) · 9.31 KB

regressions-dl20-passage-docTTTTTquery.md

File metadata and controls

119 lines (86 loc) · 9.31 KB

Anserini: Regressions for DL20 (Passage) w/ docTTTTTquery

This page describes document expansion experiments, integrated into Anserini's regression testing framework, for the TREC 2020 Deep Learning Track (Passage Ranking Task) on the MS MARCO passage collection using relevance judgments from NIST. These experimental runs take advantage of docTTTTTquery expansions.

Note that the NIST relevance judgments provide far more relevant passages per topic, unlike the "sparse" judgments provided by Microsoft (these are sometimes called "dense" judgments to emphasize this contrast). For additional instructions on working with MS MARCO passage collection, refer to this page.

The exact configurations for these regressions are stored in this YAML file. Note that this page is automatically generated from this template as part of Anserini's regression pipeline, so do not modify this page directly; modify the template instead.

Indexing

Typical indexing command:

nohup sh target/appassembler/bin/IndexCollection -collection JsonCollection \
 -input /path/to/msmarco-passage-docTTTTTquery \
 -index indexes/lucene-index.msmarco-passage-docTTTTTquery.pos+docvectors+raw \
 -generator DefaultLuceneDocumentGenerator \
 -threads 9 -storePositions -storeDocvectors -storeRaw \
  >& logs/log.msmarco-passage-docTTTTTquery &

The directory /path/to/msmarco-passage/ should be a directory containing jsonl files converted from the official passage collection, which is in tsv format. This page explains how to perform this conversion.

For additional details, see explanation of common indexing options.

Retrieval

Topics and qrels are stored in src/main/resources/topics-and-qrels/. The regression experiments here evaluate on the 54 topics for which NIST has provided judgments as part of the TREC 2020 Deep Learning Track. The original data can be found here.

After indexing has completed, you should be able to perform retrieval as follows:

nohup target/appassembler/bin/SearchCollection -index indexes/lucene-index.msmarco-passage-docTTTTTquery.pos+docvectors+raw \
 -topicreader TsvInt -topics src/main/resources/topics-and-qrels/topics.dl20.txt \
 -output runs/run.msmarco-passage-docTTTTTquery.bm25-default.topics.dl20.txt \
 -bm25 &

nohup target/appassembler/bin/SearchCollection -index indexes/lucene-index.msmarco-passage-docTTTTTquery.pos+docvectors+raw \
 -topicreader TsvInt -topics src/main/resources/topics-and-qrels/topics.dl20.txt \
 -output runs/run.msmarco-passage-docTTTTTquery.bm25-default+rm3.topics.dl20.txt \
 -bm25 -rm3 &

nohup target/appassembler/bin/SearchCollection -index indexes/lucene-index.msmarco-passage-docTTTTTquery.pos+docvectors+raw \
 -topicreader TsvInt -topics src/main/resources/topics-and-qrels/topics.dl20.txt \
 -output runs/run.msmarco-passage-docTTTTTquery.bm25-tuned.topics.dl20.txt \
 -bm25 -bm25.k1 0.82 -bm25.b 0.68 &

nohup target/appassembler/bin/SearchCollection -index indexes/lucene-index.msmarco-passage-docTTTTTquery.pos+docvectors+raw \
 -topicreader TsvInt -topics src/main/resources/topics-and-qrels/topics.dl20.txt \
 -output runs/run.msmarco-passage-docTTTTTquery.bm25-tuned+rm3.topics.dl20.txt \
 -bm25 -bm25.k1 0.82 -bm25.b 0.68 -rm3 &

Evaluation can be performed using trec_eval:

tools/eval/trec_eval.9.0.4/trec_eval -m map -c -l 2 src/main/resources/topics-and-qrels/qrels.dl20-passage.txt runs/run.msmarco-passage-docTTTTTquery.bm25-default.topics.dl20.txt
tools/eval/trec_eval.9.0.4/trec_eval -m ndcg_cut.10 -c src/main/resources/topics-and-qrels/qrels.dl20-passage.txt runs/run.msmarco-passage-docTTTTTquery.bm25-default.topics.dl20.txt
tools/eval/trec_eval.9.0.4/trec_eval -m recip_rank -c -l 2 src/main/resources/topics-and-qrels/qrels.dl20-passage.txt runs/run.msmarco-passage-docTTTTTquery.bm25-default.topics.dl20.txt
tools/eval/trec_eval.9.0.4/trec_eval -m recall.100 -c -l 2 src/main/resources/topics-and-qrels/qrels.dl20-passage.txt runs/run.msmarco-passage-docTTTTTquery.bm25-default.topics.dl20.txt
tools/eval/trec_eval.9.0.4/trec_eval -m recall.1000 -c -l 2 src/main/resources/topics-and-qrels/qrels.dl20-passage.txt runs/run.msmarco-passage-docTTTTTquery.bm25-default.topics.dl20.txt

tools/eval/trec_eval.9.0.4/trec_eval -m map -c -l 2 src/main/resources/topics-and-qrels/qrels.dl20-passage.txt runs/run.msmarco-passage-docTTTTTquery.bm25-default+rm3.topics.dl20.txt
tools/eval/trec_eval.9.0.4/trec_eval -m ndcg_cut.10 -c src/main/resources/topics-and-qrels/qrels.dl20-passage.txt runs/run.msmarco-passage-docTTTTTquery.bm25-default+rm3.topics.dl20.txt
tools/eval/trec_eval.9.0.4/trec_eval -m recip_rank -c -l 2 src/main/resources/topics-and-qrels/qrels.dl20-passage.txt runs/run.msmarco-passage-docTTTTTquery.bm25-default+rm3.topics.dl20.txt
tools/eval/trec_eval.9.0.4/trec_eval -m recall.100 -c -l 2 src/main/resources/topics-and-qrels/qrels.dl20-passage.txt runs/run.msmarco-passage-docTTTTTquery.bm25-default+rm3.topics.dl20.txt
tools/eval/trec_eval.9.0.4/trec_eval -m recall.1000 -c -l 2 src/main/resources/topics-and-qrels/qrels.dl20-passage.txt runs/run.msmarco-passage-docTTTTTquery.bm25-default+rm3.topics.dl20.txt

tools/eval/trec_eval.9.0.4/trec_eval -m map -c -l 2 src/main/resources/topics-and-qrels/qrels.dl20-passage.txt runs/run.msmarco-passage-docTTTTTquery.bm25-tuned.topics.dl20.txt
tools/eval/trec_eval.9.0.4/trec_eval -m ndcg_cut.10 -c src/main/resources/topics-and-qrels/qrels.dl20-passage.txt runs/run.msmarco-passage-docTTTTTquery.bm25-tuned.topics.dl20.txt
tools/eval/trec_eval.9.0.4/trec_eval -m recip_rank -c -l 2 src/main/resources/topics-and-qrels/qrels.dl20-passage.txt runs/run.msmarco-passage-docTTTTTquery.bm25-tuned.topics.dl20.txt
tools/eval/trec_eval.9.0.4/trec_eval -m recall.100 -c -l 2 src/main/resources/topics-and-qrels/qrels.dl20-passage.txt runs/run.msmarco-passage-docTTTTTquery.bm25-tuned.topics.dl20.txt
tools/eval/trec_eval.9.0.4/trec_eval -m recall.1000 -c -l 2 src/main/resources/topics-and-qrels/qrels.dl20-passage.txt runs/run.msmarco-passage-docTTTTTquery.bm25-tuned.topics.dl20.txt

tools/eval/trec_eval.9.0.4/trec_eval -m map -c -l 2 src/main/resources/topics-and-qrels/qrels.dl20-passage.txt runs/run.msmarco-passage-docTTTTTquery.bm25-tuned+rm3.topics.dl20.txt
tools/eval/trec_eval.9.0.4/trec_eval -m ndcg_cut.10 -c src/main/resources/topics-and-qrels/qrels.dl20-passage.txt runs/run.msmarco-passage-docTTTTTquery.bm25-tuned+rm3.topics.dl20.txt
tools/eval/trec_eval.9.0.4/trec_eval -m recip_rank -c -l 2 src/main/resources/topics-and-qrels/qrels.dl20-passage.txt runs/run.msmarco-passage-docTTTTTquery.bm25-tuned+rm3.topics.dl20.txt
tools/eval/trec_eval.9.0.4/trec_eval -m recall.100 -c -l 2 src/main/resources/topics-and-qrels/qrels.dl20-passage.txt runs/run.msmarco-passage-docTTTTTquery.bm25-tuned+rm3.topics.dl20.txt
tools/eval/trec_eval.9.0.4/trec_eval -m recall.1000 -c -l 2 src/main/resources/topics-and-qrels/qrels.dl20-passage.txt runs/run.msmarco-passage-docTTTTTquery.bm25-tuned+rm3.topics.dl20.txt

Effectiveness

With the above commands, you should be able to reproduce the following results:

MAP BM25 (Default) +RM3 BM25 (Tuned) +RM3
DL20 (Passage) 0.4074 0.4295 0.4082 0.4296
NDCG@10 BM25 (Default) +RM3 BM25 (Tuned) +RM3
DL20 (Passage) 0.6187 0.6172 0.6192 0.6177
RR BM25 (Default) +RM3 BM25 (Tuned) +RM3
DL20 (Passage) 0.7326 0.7424 0.7425 0.7422
R@100 BM25 (Default) +RM3 BM25 (Tuned) +RM3
DL20 (Passage) 0.7044 0.7153 0.7046 0.7143
R@1000 BM25 (Default) +RM3 BM25 (Tuned) +RM3
DL20 (Passage) 0.8452 0.8699 0.8443 0.8692

Note that retrieval metrics are computed to depth 1000 hits per query (as opposed to 100 hits per query for DL20 doc ranking). Also, for computing nDCG, remember that we keep qrels of all relevance grades, whereas for other metrics (e.g., MAP), relevance grade 1 is considered not relevant (i.e., use the -l 2 option in trec_eval).

The setting "default" refers the default BM25 settings of k1=0.9, b=0.4, while "tuned" refers to the tuned setting of k1=0.82, b=0.68 (see this page for more details about tuning).