forked from SaFoLab-WISC/InjecGuard
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
154 lines (116 loc) · 5.93 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import os
import torch
import numpy as np
from transformers import AutoTokenizer, get_scheduler
from torch.utils.data import DataLoader
from InjecGuard import InjecGuard
from datasets import load_dataset
from util import set_seed, get_logger, compute_accuracy
from params import parse_args
from eval import evaluate
def train():
global logger
args = parse_args()
set_seed(args)
logger = get_logger(os.path.join(args.logs, "log_{}.txt".format(args.name)))
logger.info("Effective parameters:")
for key in sorted(args.__dict__):
logger.info(" <<< {}: {}".format(key, args.__dict__[key]))
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
# init train setting
epochs = args.epochs
save_path = args.checkpoint_path
if not os.path.exists(save_path):
os.makedirs(save_path)
print(f"Directory '{save_path}' created.")
else:
print(f"Directory '{save_path}' already exists.")
# tokenizer initial
tokenizer = AutoTokenizer.from_pretrained('microsoft/deberta-v3-base')
def preprocess_function(examples):
encoding_text = tokenizer(examples['prompt'], padding='max_length', truncation=True, max_length=args.max_length)
return {
'input_ids': encoding_text['input_ids'],
'attention_mask': encoding_text['attention_mask'],
}
# Prepare dataset
data_files = {
"train": args.train_set,
"valid": args.valid_set,
}
dataset = load_dataset('json', data_files=data_files)
encoded_dataset = dataset.map(preprocess_function, batched=True)
encoded_dataset = encoded_dataset.map(lambda examples: {'labels': [label for label in examples['label']]}, batched=True)
encoded_dataset.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
train_loader = DataLoader(encoded_dataset['train'], batch_size=args.batch_size, shuffle=True)
validation_loader = DataLoader(encoded_dataset['valid'], batch_size=args.eval_batch_size, shuffle=False)
model = InjecGuard('microsoft/deberta-v3-base', num_labels=2, device=device)
if args.resume:
model.load_state_dict(torch.load(args.resume, map_location=device), strict=False)
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, betas=(args.beta1, args.beta2), eps=args.eps)
scheduler = get_scheduler(
name="linear",
optimizer=optimizer,
num_warmup_steps=args.warmup,
num_training_steps=epochs * len(train_loader)
)
best_accuracy = 0
for epoch in range(epochs):
model.train()
for step, batch in enumerate(train_loader):
input_ids, attention_mask, labels = batch['input_ids'], batch['attention_mask'], batch['labels']
optimizer.zero_grad()
input_ids = input_ids.to(device)
attention_mask = attention_mask.to(device)
labels = labels.to(device)
logits, loss = model(input_ids, attention_mask, labels, mode="train")
loss.backward()
optimizer.step()
scheduler.step()
if step % args.display == 0:
logger.info(f"Step: {step} / {len(train_loader)}.")
logger.info(f"Loss: {loss:.3f}")
if ((step % args.save_step == 0) and (step != 0)) or (step == (len(train_loader) - 1)):
model.eval()
loss_list, logits_list, labels_list = [], [], []
with torch.no_grad():
for eval_step, batch in enumerate(validation_loader):
input_ids, attention_mask, labels = batch['input_ids'], batch['attention_mask'], batch['labels']
optimizer.zero_grad()
input_ids = input_ids.to(device)
attention_mask = attention_mask.to(device)
labels = labels.to(device)
logits, loss = model(input_ids, attention_mask, labels)
loss_list.append(loss.cpu().item())
logits_list.append(logits.cpu())
labels_list.append(labels.cpu())
if eval_step % args.display == 0:
logger.info(f"Step: {eval_step} / {len(validation_loader)}.")
logger.info(f"Loss: {loss:.3f}")
combined_logits = torch.cat(logits_list, dim=0)
combined_labels = torch.cat(labels_list, dim=0)
pred = combined_logits.argmax(1)
benign_accuracy, injection_accuracy, total_accuracy = compute_accuracy(pred, combined_labels)
print(f"total accuracy: {total_accuracy}")
print(f"benign accuracy: {benign_accuracy}")
print(f"injection accuracy: {injection_accuracy}")
print(f"loss: {np.mean(loss_list)}")
# eval on valid set
if total_accuracy > args.save_thres:
model_path = f'{save_path}/epoch_{epoch}_{step}_model.pth'
torch.save(model.state_dict(), model_path)
print(f"Saved to {model_path}.")
if total_accuracy > best_accuracy:
best_accuracy = total_accuracy
best_model_path = f'{save_path}/best_model.pth'
torch.save(model.state_dict(), best_model_path)
print(f"Saved to {best_model_path}.")
model.train()
# evaluate on overall test set
logger.info("Evaluate Best Model on Test Sets.")
model.load_state_dict(torch.load(best_model_path, map_location=device))
logger.info(f"Loaded model from {best_model_path}.")
evaluate(model, args.dataset_root)
if __name__ == "__main__":
train()