forked from pytorch/torchtune
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path70B_full.yaml
112 lines (100 loc) · 3.45 KB
/
70B_full.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
# Config for multi-device full finetuning in full_finetune_distributed.py
# using a Llama3.1 70B Instruct model
#
# This config assumes that you've run the following command before launching
# this run:
# tune download meta-llama/Meta-Llama-3.1-70B-Instruct --output-dir /tmp/Meta-Llama-3.1-70B-Instruct --ignore-patterns "original/consolidated*"
#
# To launch on 8 devices, run the following command from root:
# tune run --nproc_per_node 8 full_finetune_distributed --config llama3_1/70B_full
#
# You can add specific overrides through the command line. For example
# to override the checkpointer directory while launching training
# you can run:
# tune run --nproc_per_node 8 full_finetune_distributed --config llama3_1/70B_full checkpointer.checkpoint_dir=<YOUR_CHECKPOINT_DIR>
#
# This config is only tested on an 8xA100 machine.
#
# Tokenizer
tokenizer:
_component_: torchtune.models.llama3.llama3_tokenizer
path: /tmp/Meta-Llama-3.1-70B-Instruct/original/tokenizer.model
max_seq_len: null
# Dataset
dataset:
packed: False # Set to true for great speed ups
_component_: torchtune.datasets.alpaca_dataset
seed: null
shuffle: True
# Model Arguments
model:
_component_: torchtune.models.llama3_1.llama3_1_70b
checkpointer:
_component_: torchtune.training.FullModelHFCheckpointer
checkpoint_dir: /tmp/Meta-Llama-3.1-70B-Instruct/
checkpoint_files: [
model-00001-of-00030.safetensors,
model-00002-of-00030.safetensors,
model-00003-of-00030.safetensors,
model-00004-of-00030.safetensors,
model-00005-of-00030.safetensors,
model-00006-of-00030.safetensors,
model-00007-of-00030.safetensors,
model-00008-of-00030.safetensors,
model-00009-of-00030.safetensors,
model-00010-of-00030.safetensors,
model-00011-of-00030.safetensors,
model-00012-of-00030.safetensors,
model-00013-of-00030.safetensors,
model-00014-of-00030.safetensors,
model-00015-of-00030.safetensors,
model-00016-of-00030.safetensors,
model-00017-of-00030.safetensors,
model-00018-of-00030.safetensors,
model-00019-of-00030.safetensors,
model-00020-of-00030.safetensors,
model-00021-of-00030.safetensors,
model-00022-of-00030.safetensors,
model-00023-of-00030.safetensors,
model-00024-of-00030.safetensors,
model-00025-of-00030.safetensors,
model-00026-of-00030.safetensors,
model-00027-of-00030.safetensors,
model-00028-of-00030.safetensors,
model-00029-of-00030.safetensors,
model-00030-of-00030.safetensors,
]
recipe_checkpoint: null
output_dir: /tmp/Meta-Llama-3.1-70B-Instruct/
model_type: LLAMA3
resume_from_checkpoint: False
# Fine-tuning arguments
batch_size: 2
epochs: 3
optimizer:
_component_: torch.optim.AdamW
lr: 2e-5
# Note: highly recommended to use fused=True optimizer flag
# with CPU offload for faster optimizer step.
fused: True
loss:
_component_: torchtune.modules.loss.CEWithChunkedOutputLoss
max_steps_per_epoch: null
gradient_accumulation_steps: 1
# Training env
device: cuda
# Memory management
enable_activation_checkpointing: True
enable_activation_offloading: False # True reduces memory
custom_sharded_layers: ['tok_embeddings', 'output']
fsdp_cpu_offload: True
compile: False # pytorch compile, set to true for perf/memory improvement
# Reduced precision
dtype: bf16
# Logging
metric_logger:
_component_: torchtune.training.metric_logging.DiskLogger
log_dir: ${output_dir}
output_dir: /tmp/full-llama3_1-finetune
log_every_n_steps: 1
log_peak_memory_stats: True