Skip to content

Commit 006c9a7

Browse files
committed
More equations as figures
1 parent 62a0bb9 commit 006c9a7

File tree

7 files changed

+5
-5
lines changed

7 files changed

+5
-5
lines changed

numpy/broadcast-rotation/README.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -11,7 +11,7 @@ R =
1111
\end{pmatrix}
1212
--->
1313

14-
![img](http://quicklatex.com/cache3/9c/ql_ee4015bef241c06a5119104118f9a19c_l3.png)
14+
![img](../img/rotation-matrix.png)
1515

1616
where θ is the angle of rotation (in radians). Start from the x-y coordinates
1717
in the file points_circle.dat and rotate them by 90°. Utilize broadcasting for

numpy/heat-equation/README.md

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -5,7 +5,7 @@ Heat (or diffusion) equation is
55
<!-- Equation
66
\frac{\partial u}{\partial t} = \alpha \nabla^2 u
77
-->
8-
![img](https://quicklatex.com/cache3/d2/ql_b3f6b8bdc3a8862c73c5a97862afb9d2_l3.png)
8+
![img](../img/heat-equation.png)
99

1010
where **u(x, y, t)** is the temperature field that varies in space and time,
1111
and α is thermal diffusivity constant. The two dimensional Laplacian can be
@@ -17,22 +17,22 @@ discretized with finite differences as
1717
&+ \frac{u(i,j-1)-2u(i,j)+u(i,j+1)}{(\Delta y)^2}
1818
\end{align*}
1919
-->
20-
![img](https://quicklatex.com/cache3/2d/ql_59f49ed64dbbe76704e0679b8ad7c22d_l3.png)
20+
![img](../img/nabla.png)
2121

2222
Given an initial condition (u(t=0) = u0) one can follow the time dependence of
2323
the temperature field with explicit time evolution method:
2424

2525
<!-- Equation
2626
u^{m+1}(i,j) = u^m(i,j) + \Delta t \alpha \nabla^2 u^m(i,j)
2727
-->
28-
![img](https://quicklatex.com/cache3/9e/ql_9eb7ce5f3d5eccd6cfc1ff5638bf199e_l3.png)
28+
![img](../img/heat-time-propagation.png)
2929

3030
Note: Algorithm is stable only when
3131

3232
<!-- Equation
3333
\Delta t < \frac{1}{2 \alpha} \frac{(\Delta x \Delta y)^2}{(\Delta x)^2 (\Delta y)^2}
3434
-->
35-
![img](https://quicklatex.com/cache3/d1/ql_0e7107049c9183d11dbb1e81174280d1_l3.png)
35+
![img](../img/heat-stability.png)
3636

3737
Implement two dimensional heat equation with NumPy using the initial
3838
temperature field in the file [bottle.dat](bottle.dat) (the file consists of a

numpy/img/heat-equation.png

942 Bytes
Loading

numpy/img/heat-stability.png

1.19 KB
Loading

numpy/img/heat-time-propagation.png

1.37 KB
Loading

numpy/img/nabla.png

2.71 KB
Loading

numpy/img/rotation-matrix.png

1.64 KB
Loading

0 commit comments

Comments
 (0)