Skip to content

Latest commit

 

History

History

phoenix5-spark3

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 

phoenix-spark extends Phoenix's MapReduce support to allow Spark to load Phoenix tables as DataFrames, and enables persisting DataFrames back to Phoenix.

Configuring Spark to use the connector

Use the shaded connector JAR phoenix5-spark3-shaded-6.0.0-SNAPSHOT.jar . Apart from the shaded connector JAR, you also need to add the hbase mapredcp libraries and the hbase configuration directory to the classpath. The final classpath should be something like

/etc/hbase/conf:$(hbase mapredcp):phoenix5-spark3-shaded-6.0.0-SNAPSHOT.jar

(add the exact paths as appropiate to your system) Both the spark.driver.extraClassPath and spark.executor.extraClassPath properties need to be set the above classpath. You may add them spark-defaults.conf, or specify them on the spark-shell or spark-submit command line.

Configuration properties

Name Default Usage Description
table empty R/W table name as namespace.table_name
zkUrl empty R/W (Optional) List of zookeeper hosts. Deprecated, use jdbcUrl instead. Recommended not to set, value will be taken from hbase-site.xml
jdbcUrl empty R/W (Optional) jdbc url connection to database as jdbc:phoenix:zkHost:zkport. Recommended not to set, value will be taken from hbase-site.xml
dateAsTimestamp false R Cast Date to Timestamp
doNotMapColumnFamily false R For non default column family. Do not prefix column with column family name
TenantId empty R/W Define tenantId when reading from multitenant table
phoenixconfigs empty R/W Comma seperated value of hbase/phoenix config to override. (property=value,property=value)
skipNormalizingIdentifier empty W skip normalize identifier

Reading Phoenix Tables

Given a Phoenix table with the following DDL and DML:

CREATE TABLE TABLE1 (ID BIGINT NOT NULL PRIMARY KEY, COL1 VARCHAR);
UPSERT INTO TABLE1 (ID, COL1) VALUES (1, 'test_row_1');
UPSERT INTO TABLE1 (ID, COL1) VALUES (2, 'test_row_2');

Load as a DataFrame using the DataSourceV2 API

Scala example:

import org.apache.spark.SparkContext
import org.apache.spark.sql.{SQLContext, SparkSession}

val spark = SparkSession
  .builder()
  .appName("phoenix-test")
  .master("local")
  .config("spark.hadoopRDD.ignoreEmptySplits", "false")
  .getOrCreate()

// Load data from TABLE1
val df = spark.sqlContext
  .read
  .format("phoenix")
  .option("table", "TABLE1")
  .load

df.filter(df("COL1") === "test_row_1" && df("ID") === 1L)
  .select(df("ID"))
  .show

spark.stop()

Java example:

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SQLContext;

public class PhoenixSparkRead {
    
    public static void main() throws Exception {
        SparkConf sparkConf = new SparkConf().setMaster("local").setAppName("phoenix-test")
            .set("spark.hadoopRDD.ignoreEmptySplits", "false");
        SparkSessinon spark = SparkSession.builder().config(sparkConf).getOrCreate();
        
        // Load data from TABLE1
        Dataset<Row> df = spark
            .read()
            .format("phoenix")
            .option("table", "TABLE1")
            .load();
        df.createOrReplaceTempView("TABLE1");
    
        df = spark.sql("SELECT * FROM TABLE1 WHERE COL1='test_row_1' AND ID=1L");
        df.show();

      spark.stop();
    }
}

Load as a DataFrame using SparkSql and the DataSourceV2 API

Scala example:

import org.apache.spark.SparkContext
import org.apache.spark.sql.{SQLContext, SparkSession}

val spark = SparkSession
  .builder()
  .appName("phoenix-test")
  .master("local")
  .config("spark.hadoopRDD.ignoreEmptySplits", "false")
  .getOrCreate()

// Load data from TABLE1
spark.sql("CREATE TABLE TABLE1_SQL USING phoenix OPTIONS ('table' 'TABLE1')")

val df = spark.sql(s"SELECT ID FROM TABLE1_SQL where COL1='test_row_1'")

df.show

spark.stop()

Java example:

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SQLContext;

public class PhoenixSparkRead {
    
    public static void main() throws Exception {
        SparkConf sparkConf = new SparkConf().setMaster("local").setAppName("phoenix-test")
            .set("spark.hadoopRDD.ignoreEmptySplits", "false");
        SparkSessinon spark = SparkSession.builder().config(sparkConf).getOrCreate();
        
        // Load data from TABLE1
        Dataset<Row> df = spark.sql("CREATE TABLE TABLE1_SQL USING phoenix OPTIONS ('table' 'TABLE1'");    
        
        df = spark.sql("SELECT * FROM TABLE1_SQL WHERE COL1='test_row_1' AND ID=1L");
        df.show();

        spark.stop();
    }
}

Saving to Phoenix

Save DataFrames to Phoenix using DataSourceV2

The save is method on DataFrame allows passing in a data source type. You can use phoenix for DataSourceV2 and must also pass in a table parameter to specify which table to persist the DataFrame to. The column names are derived from the DataFrame's schema field names, and must match the Phoenix column names.

The save method also takes a SaveMode option, for which only SaveMode.Append is supported.

Given two Phoenix tables with the following DDL:

CREATE TABLE INPUT_TABLE (id BIGINT NOT NULL PRIMARY KEY, col1 VARCHAR, col2 INTEGER);
CREATE TABLE OUTPUT_TABLE (id BIGINT NOT NULL PRIMARY KEY, col1 VARCHAR, col2 INTEGER);

you can load from an input table and save to an output table as a DataFrame as follows in Scala:

import org.apache.spark.SparkContext
import org.apache.spark.sql.{SQLContext, SparkSession, SaveMode}

val spark = SparkSession
  .builder()
  .appName("phoenix-test")
  .master("local")
  .config("spark.hadoopRDD.ignoreEmptySplits", "false")
  .getOrCreate()
  
// Load INPUT_TABLE
val df = spark.sqlContext
  .read
  .format("phoenix")
  .option("table", "INPUT_TABLE")
  .load

// Save to OUTPUT_TABLE
df.write
  .format("phoenix")
  .mode(SaveMode.Append)
  .option("table", "OUTPUT_TABLE")
  .save()
spark.stop()

Java example:

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SaveMode;
import org.apache.spark.sql.SQLContext;

public class PhoenixSparkWriteFromInputTable {
    
    public static void main() throws Exception {
        SparkConf sparkConf = new SparkConf().setMaster("local").setAppName("phoenix-test")
            .set("spark.hadoopRDD.ignoreEmptySplits", "false");
        SparkSessinon spark = SparkSession.builder().config(sparkConf).getOrCreate();
        
        // Load INPUT_TABLE
        Dataset<Row> df = spark
            .read()
            .format("phoenix")
            .option("table", "INPUT_TABLE")
            .load();
        
        // Save to OUTPUT_TABLE
        df.write()
          .format("phoenix")
          .mode(SaveMode.Append)
          .option("table", "OUTPUT_TABLE")
          .save();

        spark.stop();
    }
}

Save from an external RDD with a schema to a Phoenix table

Just like the previous example, you can pass in the data source type as phoenix and specify the table parameter indicating which table to persist the DataFrame to.

Note that the schema of the RDD must match its column data and this must match the schema of the Phoenix table that you save to.

Given an output Phoenix table with the following DDL:

CREATE TABLE OUTPUT_TABLE (id BIGINT NOT NULL PRIMARY KEY, col1 VARCHAR, col2 INTEGER);

you can save a dataframe from an RDD as follows in Scala:

import org.apache.spark.SparkContext
import org.apache.spark.sql.types.{IntegerType, LongType, StringType, StructType, StructField}
import org.apache.spark.sql.{Row, SQLContext, SparkSession, SaveMode}

val spark = SparkSession
  .builder()
  .appName("phoenix-test")
  .master("local")
  .config("spark.hadoopRDD.ignoreEmptySplits", "false")
  .getOrCreate()
  
val dataSet = List(Row(1L, "1", 1), Row(2L, "2", 2), Row(3L, "3", 3))

val schema = StructType(
  Seq(StructField("ID", LongType, nullable = false),
    StructField("COL1", StringType),
    StructField("COL2", IntegerType)))

val rowRDD = spark.sparkContext.parallelize(dataSet)

// Apply the schema to the RDD.
val df = spark.createDataFrame(rowRDD, schema)

df.write
  .format("phoenix")
  .option("table", "OUTPUT_TABLE")
  .mode(SaveMode.Append)
  .save()

spark.stop()

Java example:

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.SaveMode;
import org.apache.spark.sql.SparkSession;
import org.apache.spark.sql.SQLContext;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType;

import java.util.ArrayList;
import java.util.List;

public class PhoenixSparkWriteFromRDDWithSchema {
 
    public static void main() throws Exception {
        SparkConf sparkConf = new SparkConf().setMaster("local").setAppName("phoenix-test")
            .set("spark.hadoopRDD.ignoreEmptySplits", "false");
        SparkSessinon spark = SparkSession.builder().config(sparkConf).getOrCreate();
  
        // Generate the schema based on the fields
        List<StructField> fields = new ArrayList<>();
        fields.add(DataTypes.createStructField("ID", DataTypes.LongType, false));
        fields.add(DataTypes.createStructField("COL1", DataTypes.StringType, true));
        fields.add(DataTypes.createStructField("COL2", DataTypes.IntegerType, true));
        StructType schema = DataTypes.createStructType(fields);
  
        // Generate the rows with the same exact schema
        List<Row> rows = new ArrayList<>();
        for (int i = 1; i < 4; i++) {
            rows.add(RowFactory.create(Long.valueOf(i), String.valueOf(i), i));
        }
  
        // Create a DataFrame from the rows and the specified schema
        Dataset<Row> df = spark.createDataFrame(rows, schema);
        df.write()
            .format("phoenix")
            .mode(SaveMode.Append)
            .option("table", "OUTPUT_TABLE")
            .save();
        
        spark.stop();
    }
}

Notes

  • The DataSourceV2 based "phoenix" data source accepts the "jdbcUrl" parameter, which can be used to override the default Hbase/Phoenix instance specified in hbase-site.xml. It also accepts the deprected zkUrl parameter for backwards compatibility purposes. If neither is specified, it falls back to using connection defined by hbase-site.xml.

  • "jdbcUrl" expects a full Phoenix JDBC URL, i.e. "jdbc:phoenix" or "jdbc:phoenix:zkHost:zkport", while "zkUrl" expects the ZK quorum only, i.e. "zkHost:zkPort"

  • If you want to use DataSourceV1, you can use source type "org.apache.phoenix.spark" instead of "phoenix", however this is deprecated. The "org.apache.phoenix.spark" datasource does not accept the "jdbcUrl" parameter, only "zkUrl"

  • The (deprecated) functions phoenixTableAsDataFrame, phoenixTableAsRDD and saveToPhoenix use the deprecated "org.apache.phoenix.spark" datasource, and allow optionally specifying a conf Hadoop configuration parameter with custom Phoenix client settings, as well as an optional zkUrl parameter.

  • As of PHOENIX-5197, you can pass configurations from the driver to executors as a comma-separated list against the key phoenixConfigs i.e (PhoenixDataSource.PHOENIX_CONFIGS), for ex:

    df = spark
      .sqlContext
      .read
      .format("phoenix")
      .options(Map("table" -> "Table1", "phoenixConfigs" -> "hbase.client.retries.number=10,hbase.client.pause=10000"))
      .load;

    This list of properties is parsed and populated into a properties map which is passed to DriverManager.getConnection(connString, propsMap). Note that the same property values will be used for both the driver and all executors and these configurations are used each time a connection is made (both on the driver and executors).

  • As of PHOENIX-7377, you can pass boolean parameter to avoid mapping non default family columns to columnFamily.columnName by setting the key doNotMapColumnFamily to true (default value: false), for ex:

    df = spark
      .sqlContext
      .read
      .format("phoenix")
      .options(Map("table" -> "Table1", "doNotMapColumnFamily" -> "true"))
      .load;

Limitations

  • Basic support for column and predicate pushdown using the Data Source API
  • The Data Source API does not support passing custom Phoenix settings in configuration, you must create the DataFrame or RDD directly if you need fine-grained configuration.
  • No support for aggregate or distinct functions (http://phoenix.apache.org/phoenix_mr.html)

Deprecated Usages

Load as a DataFrame directly using a Configuration object

import org.apache.hadoop.conf.Configuration
import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.spark.sql.SQLContext
import org.apache.phoenix.spark._

val configuration = new Configuration()
// Can set Phoenix-specific settings, requires 'hbase.zookeeper.quorum'

val sparkConf = new SparkConf()
val sc = new SparkContext("local", "phoenix-test", sparkConf)
val sqlContext = new SQLContext(sc)

// Load the columns 'ID' and 'COL1' from TABLE1 as a DataFrame
val df = sqlContext.phoenixTableAsDataFrame(
  "TABLE1", Array("ID", "COL1"), conf = configuration
)

df.show

Load as an RDD, using a Zookeeper URL

import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.spark.sql.SQLContext
import org.apache.phoenix.spark._
import org.apache.spark.rdd.RDD

val sc = new SparkContext("local", "phoenix-test")

// Load the columns 'ID' and 'COL1' from TABLE1 as an RDD
val rdd: RDD[Map[String, AnyRef]] = sc.phoenixTableAsRDD(
  "TABLE1", Seq("ID", "COL1"), zkUrl = Some("phoenix-server:2181")
)

rdd.count()

val firstId = rdd.first()("ID").asInstanceOf[Long]
val firstCol = rdd.first()("COL1").asInstanceOf[String]

Saving RDDs to Phoenix

saveToPhoenix is an implicit method on RDD[Product], or an RDD of Tuples. The data types must correspond to the Java types Phoenix supports (http://phoenix.apache.org/language/datatypes.html)

Given a Phoenix table with the following DDL:

CREATE TABLE OUTPUT_TEST_TABLE (id BIGINT NOT NULL PRIMARY KEY, col1 VARCHAR, col2 INTEGER);
import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.phoenix.spark._

val sparkConf = new SparkConf()
val sc = new SparkContext("local", "phoenix-test", sparkConf)
val dataSet = List((1L, "1", 1), (2L, "2", 2), (3L, "3", 3))

sc
  .parallelize(dataSet)
  .saveToPhoenix(
    "OUTPUT_TEST_TABLE",
    Seq("ID","COL1","COL2"),
    zkUrl = Some("phoenix-server:2181")
  )