forked from pydata/xarray
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindexing.py
140 lines (110 loc) · 4.49 KB
/
indexing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import numpy as np
import pandas as pd
import xarray as xr
from . import randint, randn, requires_dask
nx = 3000
ny = 2000
nt = 1000
basic_indexes = {
"1slice": {"x": slice(0, 3)},
"1slice-1scalar": {"x": 0, "y": slice(None, None, 3)},
"2slicess-1scalar": {"x": slice(3, -3, 3), "y": 1, "t": slice(None, -3, 3)},
}
basic_assignment_values = {
"1slice": xr.DataArray(randn((3, ny), frac_nan=0.1), dims=["x", "y"]),
"1slice-1scalar": xr.DataArray(randn(int(ny / 3) + 1, frac_nan=0.1), dims=["y"]),
"2slicess-1scalar": xr.DataArray(
randn(int((nx - 6) / 3), frac_nan=0.1), dims=["x"]
),
}
outer_indexes = {
"1d": {"x": randint(0, nx, 400)},
"2d": {"x": randint(0, nx, 500), "y": randint(0, ny, 400)},
"2d-1scalar": {"x": randint(0, nx, 100), "y": 1, "t": randint(0, nt, 400)},
}
outer_assignment_values = {
"1d": xr.DataArray(randn((400, ny), frac_nan=0.1), dims=["x", "y"]),
"2d": xr.DataArray(randn((500, 400), frac_nan=0.1), dims=["x", "y"]),
"2d-1scalar": xr.DataArray(randn(100, frac_nan=0.1), dims=["x"]),
}
vectorized_indexes = {
"1-1d": {"x": xr.DataArray(randint(0, nx, 400), dims="a")},
"2-1d": {
"x": xr.DataArray(randint(0, nx, 400), dims="a"),
"y": xr.DataArray(randint(0, ny, 400), dims="a"),
},
"3-2d": {
"x": xr.DataArray(randint(0, nx, 400).reshape(4, 100), dims=["a", "b"]),
"y": xr.DataArray(randint(0, ny, 400).reshape(4, 100), dims=["a", "b"]),
"t": xr.DataArray(randint(0, nt, 400).reshape(4, 100), dims=["a", "b"]),
},
}
vectorized_assignment_values = {
"1-1d": xr.DataArray(randn((400, 2000)), dims=["a", "y"], coords={"a": randn(400)}),
"2-1d": xr.DataArray(randn(400), dims=["a"], coords={"a": randn(400)}),
"3-2d": xr.DataArray(
randn((4, 100)), dims=["a", "b"], coords={"a": randn(4), "b": randn(100)}
),
}
class Base:
def setup(self, key):
self.ds = xr.Dataset(
{
"var1": (("x", "y"), randn((nx, ny), frac_nan=0.1)),
"var2": (("x", "t"), randn((nx, nt))),
"var3": (("t",), randn(nt)),
},
coords={
"x": np.arange(nx),
"y": np.linspace(0, 1, ny),
"t": pd.date_range("1970-01-01", periods=nt, freq="D"),
"x_coords": ("x", np.linspace(1.1, 2.1, nx)),
},
)
class Indexing(Base):
def time_indexing_basic(self, key):
self.ds.isel(**basic_indexes[key]).load()
time_indexing_basic.param_names = ["key"]
time_indexing_basic.params = [list(basic_indexes.keys())]
def time_indexing_outer(self, key):
self.ds.isel(**outer_indexes[key]).load()
time_indexing_outer.param_names = ["key"]
time_indexing_outer.params = [list(outer_indexes.keys())]
def time_indexing_vectorized(self, key):
self.ds.isel(**vectorized_indexes[key]).load()
time_indexing_vectorized.param_names = ["key"]
time_indexing_vectorized.params = [list(vectorized_indexes.keys())]
class Assignment(Base):
def time_assignment_basic(self, key):
ind = basic_indexes[key]
val = basic_assignment_values[key]
self.ds["var1"][ind.get("x", slice(None)), ind.get("y", slice(None))] = val
time_assignment_basic.param_names = ["key"]
time_assignment_basic.params = [list(basic_indexes.keys())]
def time_assignment_outer(self, key):
ind = outer_indexes[key]
val = outer_assignment_values[key]
self.ds["var1"][ind.get("x", slice(None)), ind.get("y", slice(None))] = val
time_assignment_outer.param_names = ["key"]
time_assignment_outer.params = [list(outer_indexes.keys())]
def time_assignment_vectorized(self, key):
ind = vectorized_indexes[key]
val = vectorized_assignment_values[key]
self.ds["var1"][ind.get("x", slice(None)), ind.get("y", slice(None))] = val
time_assignment_vectorized.param_names = ["key"]
time_assignment_vectorized.params = [list(vectorized_indexes.keys())]
class IndexingDask(Indexing):
def setup(self, key):
requires_dask()
super().setup(key)
self.ds = self.ds.chunk({"x": 100, "y": 50, "t": 50})
class BooleanIndexing:
# https://github.com/pydata/xarray/issues/2227
def setup(self):
self.ds = xr.Dataset(
{"a": ("time", np.arange(10_000_000))},
coords={"time": np.arange(10_000_000)},
)
self.time_filter = self.ds.time > 50_000
def time_indexing(self):
self.ds.isel(time=self.time_filter)