forked from ROCm/AMDMIGraphX
-
Notifications
You must be signed in to change notification settings - Fork 0
/
schedule.cpp
633 lines (573 loc) · 21.8 KB
/
schedule.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/schedule.hpp>
#include <migraphx/program.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/iterator_for.hpp>
#include <migraphx/iterator.hpp>
#include <migraphx/dfor.hpp>
#include <migraphx/par_for.hpp>
#include <migraphx/functional.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/dom_info.hpp>
#include <unordered_map>
#include <unordered_set>
#include <queue>
#include <thread>
#include <mutex>
#include <migraphx/make_op.hpp>
#include <set>
#include <deque>
#include <chrono>
#include <iomanip>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_TRACE_SCHEDULE)
auto get_inputs()
{
return [](auto i) { return i->inputs(); };
}
auto get_outputs()
{
return [](auto i) { return i->outputs(); };
}
struct stream_info
{
std::unordered_map<instruction_ref, std::size_t> ins2stream;
std::unordered_map<instruction_ref, std::size_t> weights;
std::unordered_map<instruction_ref, std::size_t> iweights;
ins_dep_map mod_implicit_deps;
void calc_implicit_deps(const module& m) { mod_implicit_deps = m.calc_implicit_deps(); }
void accumulate_weights(instruction_ref last, const schedule_model& model)
{
fix<std::size_t>([&](auto self, auto ins) -> std::size_t {
if(not contains(weights, ins))
{
std::size_t weight = 0;
auto&& op = ins->get_operator();
if(not is_context_free(op) and op.name()[0] != '@')
weight = model.weight(op);
// This will ensure a stream will be assigned to return
if(op.name() == "@return")
weight = 1;
iweights[ins] = weight;
auto inputs = ins->inputs();
if(contains(mod_implicit_deps, ins))
{
const auto& impl_deps = mod_implicit_deps.at(ins);
inputs.insert(inputs.end(), impl_deps.begin(), impl_deps.end());
}
weights[ins] = std::accumulate(
inputs.begin(), inputs.end(), weight, [&](std::size_t w, instruction_ref i) {
return w + self(i);
});
}
return weights[ins];
})(last);
}
template <class Compare>
void sort_args_by_weight(std::vector<instruction_ref>& args, Compare compare) const
{
if(args.size() < 2)
return;
std::sort(args.begin(), args.end(), by(compare, [this](auto x) {
return std::make_tuple(
this->weights.at(x), x->inputs().size(), std::addressof(*x));
}));
}
std::vector<instruction_ref>::iterator sort_args(std::vector<instruction_ref>& args)
{
if(args.size() < 2)
{
return args.end();
}
const std::size_t min_partition_threshold = 2;
sort_args_by_weight(args, std::greater<>{});
auto it = std::lower_bound(std::next(args.begin()),
args.end(),
min_partition_threshold,
[&](auto i, std::size_t w) { return this->weights[i] > w; });
assert(it == args.end() or this->weights[*it] <= min_partition_threshold);
assert(it == args.end() or std::prev(it) == args.begin() or
this->weights[*std::prev(it)] > min_partition_threshold);
return it;
}
struct partition
{
std::size_t weight = 0;
std::vector<instruction_ref> instructions{};
void add(instruction_ref ins, std::size_t w)
{
weight += w;
instructions.push_back(ins);
}
};
std::size_t assign_streams(module& m, std::size_t n)
{
assert(n > 0);
partition critical;
std::unordered_map<instruction_ref, std::deque<partition>> partitions;
partitions.reserve(weights.size());
fix([&](auto self, auto ins, auto& part) {
assert(not is_end(ins, m.end()));
if(not m.has_instruction(ins))
return;
if(contains(partitions, ins))
return;
// Add an entry so we know the instruction was visited
partitions[ins];
part.add(ins, this->iweights[ins]);
auto args = ins->inputs();
auto threshold_it = this->sort_args(args);
if(not args.empty())
{
assert(threshold_it != args.begin());
self(args.front(), part);
for(auto i : range(std::next(args.begin()), threshold_it))
{
partitions[ins].emplace_back();
self(i, partitions[ins].back());
}
for(auto i : range(threshold_it, args.end()))
{
self(i, part);
}
}
// Sort instructions
m.move_instruction(ins, m.end());
})(std::prev(m.end()), critical);
// Set the critical partition to stream 0
set_stream(critical, 0);
if(n == 1)
{
// Assign streams for the other partitions
for(auto&& ins_part : partitions)
for(auto&& part : ins_part.second)
set_stream(part, 0);
return 1;
}
else
{
std::vector<std::size_t> streams(n - 1);
// Assign streams for the other partitions
for(auto&& ins_part : partitions)
{
std::sort(ins_part.second.begin(),
ins_part.second.end(),
by(std::greater<>{}, [](auto&& x) {
return std::make_tuple(x.weight, x.instructions.size());
}));
for(auto&& part : ins_part.second)
{
auto stream =
std::min_element(streams.begin(), streams.end()) - streams.begin();
set_stream(part, stream + 1);
streams[stream] += part.weight;
}
}
return 1 + std::count_if(streams.begin(), streams.end(), [](auto x) { return x > 0; });
}
}
using weight_ins = std::pair<std::size_t, instruction_ref>;
struct compare_weight_ins
{
bool operator()(const weight_ins& x, const weight_ins& y) const
{
return std::make_pair(x.first, std::addressof(*x.second)) <
std::make_pair(y.first, std::addressof(*y.second));
}
};
void sort(module& m, std::size_t)
{
std::set<weight_ins, compare_weight_ins> children;
std::unordered_map<instruction_ref, std::size_t> visited;
auto last = std::prev(m.end());
auto mw = this->weights.at(last);
auto nw = mw / (m.size() + 1);
auto add_child = [&](auto ins) {
auto x = 1 + (mw - this->weights.at(ins)) / (nw + 1);
auto w = x * this->iweights.at(ins);
auto& v = visited[ins];
auto it = children.find(std::make_pair(v * w, ins));
if(it == children.end())
{
v++;
children.insert(std::make_pair(v * w, ins));
}
};
add_child(last);
while(not children.empty())
{
// Pop the first element
auto top = children.begin()->second;
children.erase(children.begin());
m.move_instruction(top, m.begin());
for(auto ins : top->inputs())
{
if(not m.has_instruction(ins))
continue;
add_child(ins);
}
if(contains(mod_implicit_deps, top))
{
for(auto ins : mod_implicit_deps.at(top))
{
assert(m.has_instruction(ins));
add_child(ins);
}
}
}
// move dangling parameter to the front so as not be removed
auto ins = std::next(last);
while(ins != m.end())
{
auto next = std::next(ins);
if(ins->name() == "@param")
{
m.move_instruction(ins, m.begin());
}
ins = next;
}
}
void set_stream(const partition& p, std::size_t n)
{
for(auto ins : p.instructions)
if(iweights[ins] > 0)
set_stream(ins, n);
}
void set_stream(instruction_ref ins, std::size_t n)
{
assert(iweights[ins] > 0);
ins2stream[ins] = n;
}
std::size_t get_stream(instruction_ref ins) const { return ins2stream.at(ins); }
bool has_stream(instruction_ref ins) const { return contains(ins2stream, ins); }
template <class F>
bool different(F f, std::size_t stream) const
{
bool result = false;
f([&](auto s) {
if(s != stream)
{
result = true;
return false;
}
// cppcheck-suppress uselessAssignmentArg
stream = s;
return true;
});
return result;
}
template <class F>
bool different(F f) const
{
bool result = false;
f([&](auto s) {
result = this->different(f, s);
return false;
});
return result;
}
template <class Selector>
auto get_streams_from(instruction_ref start, Selector select) const
{
return [=](auto f) {
return fix<bool>([&](auto self, auto ins) {
return all_of(select(ins), [&](auto i) {
if(has_stream(i))
return f(this->get_stream(i));
else
return self(i);
});
})(start);
};
}
std::unordered_set<std::size_t> get_streams(instruction_ref ins) const
{
if(has_stream(ins))
return {get_stream(ins)};
std::unordered_set<std::size_t> result;
get_streams_from(ins, get_inputs())([&](auto s) {
result.insert(s);
return true;
});
return result;
}
template <class... Ts>
bool is_merge_point(instruction_ref ins, Ts... xs) const
{
return different(get_streams_from(ins, get_inputs()), xs...);
}
template <class... Ts>
bool is_split_point(instruction_ref ins, Ts... xs) const
{
return different(get_streams_from(ins, get_outputs()), xs...);
}
std::vector<instruction_ref> get_recorded_instructions(instruction_ref start)
{
std::vector<instruction_ref> result;
std::unordered_map<std::size_t, instruction_ref> m;
fix([&](auto self, auto ins) {
for(auto i : ins->inputs())
{
if(iweights.at(i) == 0)
{
self(i);
continue;
}
auto stream = this->get_stream(i);
if(not contains(m, stream))
m[stream] = i;
else
m[stream] = std::min(m[stream], i, by(std::less<>{}, [&](auto x) {
return std::distance(x, start);
}));
}
})(start);
std::transform(
m.begin(), m.end(), std::back_inserter(result), [](auto&& p) { return p.second; });
return result;
}
std::unordered_map<instruction_ref, std::vector<std::vector<instruction_ref>>>
find_concurrent_instructions(module& m) const
{
std::unordered_map<instruction_ref, std::vector<std::vector<instruction_ref>>> result;
std::unordered_map<instruction_ref, std::unordered_set<instruction_ref>> merge_from;
dominator_info di = compute_dominator(m);
result.reserve(m.size());
merge_from.reserve(m.size());
for(auto ins : reverse_iterator_for(m))
{
for(auto&& arg : ins->outputs())
{
if(not m.has_instruction(arg))
continue;
if(is_merge_point(arg))
merge_from[ins].insert(arg);
merge_from[ins].insert(merge_from[arg].begin(), merge_from[arg].end());
}
if(is_split_point(ins))
{
erase_if(merge_from[ins],
[&](auto merge) { return di.strictly_dominate(ins, merge); });
}
auto streams = this->get_streams(ins);
// Collect concur instructions for each merge point.
for(const auto& merge : merge_from[ins])
{
for(auto stream : streams)
{
if(result[merge].size() <= stream)
result[merge].resize(stream + 1);
auto&& r = result[merge][stream];
r.push_back(ins);
// Copy inputs if they dont have a stream(and are not a builtin and context
// free). Inputs without a stream can have a implicit dependency
std::copy_if(ins->inputs().begin(),
ins->inputs().end(),
std::back_inserter(r),
[&](auto x) {
return not this->has_stream(x) and
not is_context_free(x->get_operator()) and
x->name().front() != '@';
});
}
}
}
return result;
}
std::unordered_map<instruction_ref, std::unordered_set<instruction_ref>>
get_conflicts(module& m)
{
using conflict_table_type =
std::unordered_map<instruction_ref, std::unordered_set<instruction_ref>>;
conflict_table_type conflict_table;
auto concur_ins = this->find_concurrent_instructions(m);
// Compute an index for each instruction
std::unordered_map<instruction_ref, std::size_t> ins2index;
std::size_t index_total = 0;
for(auto ins : iterator_for(m))
ins2index[ins] = index_total++;
std::vector<conflict_table_type> thread_conflict_tables(
std::thread::hardware_concurrency());
std::vector<instruction_ref> index_to_ins;
index_to_ins.reserve(concur_ins.size());
std::transform(concur_ins.begin(),
concur_ins.end(),
std::back_inserter(index_to_ins),
[](auto&& it) { return it.first; });
par_for(concur_ins.size(), [&](auto ins_index, auto tid) {
auto merge_first = index_to_ins[ins_index];
assert(concur_ins.count(merge_first) > 0);
auto& merge_second = concur_ins.at(merge_first);
// ensure there are enough elements for different threads
assert(tid < thread_conflict_tables.size());
auto& thrd_table = thread_conflict_tables.at(tid);
std::unordered_set<instruction_ref> checked_ins_set;
auto range_i = range(merge_second.begin(), std::prev(merge_second.end()));
for(auto it_i : iterator_for(range_i))
{
std::unordered_set<instruction_ref> ins1_set;
std::copy_if(it_i->begin(),
it_i->end(),
std::inserter(ins1_set, ins1_set.end()),
[&](auto i) { return not contains(checked_ins_set, i); });
checked_ins_set.insert(ins1_set.begin(), ins1_set.end());
auto range_j = range(std::next(it_i), merge_second.end());
std::unordered_set<instruction_ref> ins2_set;
for(auto it_j : iterator_for(range_j))
{
std::copy_if(it_j->begin(),
it_j->end(),
std::inserter(ins2_set, ins2_set.end()),
[&](auto i) { return not contains(checked_ins_set, i); });
}
for(auto ins1 : ins1_set)
{
auto p1 = ins2index.at(ins1);
for(auto ins2 : ins2_set)
{
if(ins1 == ins2)
continue;
auto p2 = ins2index.at(ins2);
if(p2 > p1)
thrd_table[ins2].insert(ins1);
else
thrd_table[ins1].insert(ins2);
}
}
}
});
// merge thread_conflict_tables together
for(auto& tbl : thread_conflict_tables)
{
for(auto& it : tbl)
{
conflict_table[it.first].insert(it.second.begin(), it.second.end());
}
}
// Remove instructions from the conflict table of an ealier instruction
for(auto&& ip : conflict_table)
{
auto ins1 = ip.first;
for(auto ins2 : ip.second)
if(contains(conflict_table[ins2], ins1))
conflict_table[ins2].erase(ins1);
}
return conflict_table;
}
};
void schedule::apply(module& m) const
{
if(not enable)
return;
stream_info si;
si.calc_implicit_deps(m);
auto last = std::prev(m.end());
si.accumulate_weights(last, model);
auto nstreams = si.assign_streams(m, model.concurrency());
si.sort(m, model.concurrency());
if(enabled(MIGRAPHX_TRACE_COMPILE{}) or enabled(MIGRAPHX_TRACE_SCHEDULE{}))
{
m.annotate(std::cout, [&](auto ins) {
if(ins->name() == "@param" and not contains(si.weights, ins))
return;
std::cout << ":";
std::cout << " weight=" << si.weights.at(ins);
std::cout << " input={";
si.get_streams_from(ins, get_inputs())([&](auto s) {
std::cout << s << ",";
return true;
});
std::cout << "}";
if(si.has_stream(ins))
std::cout << " stream=" << si.get_stream(ins);
});
std::cout << std::endl;
}
// No concurrency
if(nstreams < 2)
return;
// Schedule instructions
std::size_t wait_id = 0;
std::unordered_map<instruction_ref, std::size_t> ins2wait;
std::unordered_map<std::size_t, std::unordered_set<std::size_t>> waited_for;
std::unordered_map<instruction_ref, std::unordered_set<std::size_t>> ins2waited;
ins2wait.reserve(m.size());
ins2waited.reserve(m.size());
for(auto ins : iterator_for(m))
{
// Only schedule instructions that have a stream
if(not si.has_stream(ins))
continue;
assert(si.weights[ins] > 0);
// Schedule instruction on the stream
auto stream = si.get_stream(ins);
assert(stream < model.concurrency());
model.sched(m, ins, stream);
// Insert wait instructions
if(si.is_merge_point(ins, stream))
{
for(auto i : si.get_recorded_instructions(ins))
{
if(not si.has_stream(i) or si.get_stream(i) == stream)
continue;
// Create a new event if it hasn't been recorded
if(not contains(ins2wait, i))
{
ins2wait[i] = wait_id;
model.record(m, i, wait_id);
wait_id++;
}
auto w = ins2wait.at(i);
// If we already waited for the event on this stream then dont
// insert another wait event
if(not contains(waited_for[stream], w))
model.wait(m, ins, w);
// Store the event as waited
waited_for[stream].insert(w);
// Store all wait events that have been waited on prior to the recorded instruction
waited_for[stream].insert(ins2waited[i].begin(), ins2waited[i].end());
}
}
// Store wait events that have already been waited on
if(si.is_split_point(ins, stream))
{
ins2waited[ins] = waited_for[stream];
}
}
// Add memory conflicts
auto conflict_table = si.get_conflicts(m);
for(auto&& ip : conflict_table)
{
if(ip.second.empty())
continue;
std::vector<instruction_ref> args;
args.push_back(ip.first);
args.insert(args.end(), ip.second.begin(), ip.second.end());
m.insert_instruction(std::next(ip.first), make_op("identity"), args);
}
}
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx