forked from ROCm/AMDMIGraphX
-
Notifications
You must be signed in to change notification settings - Fork 0
/
simplify_reshapes.cpp
809 lines (735 loc) · 27.7 KB
/
simplify_reshapes.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <iterator>
#include <migraphx/simplify_reshapes.hpp>
#include <migraphx/program.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/op/as_shape.hpp>
#include <migraphx/op/transpose.hpp>
#include <migraphx/op/concat.hpp>
#include <migraphx/op/slice.hpp>
#include <migraphx/iterator_for.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/matcher.hpp>
#include <migraphx/permutation.hpp>
#include <migraphx/dead_code_elimination.hpp>
#include <unordered_set>
#include <migraphx/make_op.hpp>
#include <migraphx/tune_axis.hpp>
#include <map>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
const auto& reshaper_names()
{
// clang-format off
static const std::unordered_set<std::string> names = {
"flatten",
"reshape",
"contiguous",
"squeeze",
"unsqueeze"
};
// clang-format on
return names;
}
bool is_reshaper(instruction_ref ins) { return contains(reshaper_names(), ins->name()); }
instruction_ref find_transpose_input(instruction_ref ins)
{
if(ins->inputs().size() != 1)
return ins;
if(ins->inputs().front()->name() == "contiguous")
return find_transpose_input(ins->inputs().front());
if(ins->inputs().front()->name() == "transpose")
return ins->inputs().front();
return ins;
}
auto get_transpose_dims(instruction_ref ins)
{
return any_cast<const op::transpose&>(ins->get_operator()).dims;
}
bool is_no_transpose(const std::vector<int64_t>& dims)
{
if(dims.empty())
return true;
if(dims.front() != 0)
return false;
return std::adjacent_find(
dims.begin(), dims.end(), [](auto x, auto y) { return (y - x) != 1; }) == dims.end();
}
struct find_reshaper
{
auto matcher() const
{
auto reshaper = match::name(reshaper_names());
auto contiguous = match::name("contiguous");
auto no_output_reshape = match::none_of[match::outputs()](reshaper);
auto input_reshape = match::arg(0)(match::skip(contiguous)(reshaper));
auto input = match::skip(reshaper, contiguous)(match::any().bind("x"));
return reshaper(no_output_reshape, input_reshape, input);
}
void apply(module& m, const match::matcher_result& mr) const
{
auto ins = mr.result;
auto input = mr.instructions["x"];
auto dims = ins->get_shape().lens();
if(not input->get_shape().standard())
input = m.insert_instruction(ins, make_op("contiguous"), input);
m.replace_instruction(ins, make_op("reshape", {{"dims", dims}}), input);
}
};
struct find_nop_reshapes
{
auto matcher() const
{
auto reshapes = reshaper_names();
reshapes.insert("as_shape");
reshapes.insert("broadcast");
reshapes.insert("concat");
reshapes.insert("convert");
reshapes.insert("multibroadcast");
reshapes.insert("pad");
reshapes.insert("slice");
reshapes.insert("transpose");
return match::name(reshapes)(match::same_shape(match::arg(0)));
}
void apply(module& m, const match::matcher_result& mr) const
{
auto ins = mr.result;
m.replace_instruction(ins, ins->inputs().front());
}
};
struct find_transpose
{
auto matcher() const
{
auto output_not_transpose =
match::none_of(match::skip_output(match::name("contiguous"))(match::name("transpose")));
auto input_has_transpose =
match::args(match::skip(match::name("contiguous"))(match::name("transpose")));
return match::name("transpose")(output_not_transpose, input_has_transpose);
}
void apply(module& m, const match::matcher_result& mr) const
{
auto ins = mr.result;
auto x = ins;
auto t = ins;
std::vector<std::int64_t> dims(ins->get_shape().lens().size());
std::iota(dims.begin(), dims.end(), 0);
do
{
dims = reorder_dims(get_transpose_dims(t), dims);
x = t;
t = find_transpose_input(x);
} while(x != t and t->name() == "transpose");
if(t == ins or t->name() != "transpose")
return;
if(is_no_transpose(dims))
{
m.replace_instruction(ins, t->inputs().front());
}
else
{
m.replace_instruction(
ins, make_op("transpose", {{"permutation", dims}}), t->inputs().front());
}
}
};
struct find_nested_convert
{
auto matcher() const { return match::name("convert")(match::arg(0)(match::name("convert"))); }
void apply(module& m, const match::matcher_result& mr) const
{
auto ins = mr.result;
auto x = ins->inputs().front();
auto input = x->inputs().front();
if(ins->get_shape() != input->get_shape())
return;
m.replace_instruction(ins, input);
}
};
struct find_nested_slice
{
auto matcher() const { return match::name("slice")(match::arg(0)(match::name("slice"))); }
using axes_map = std::map<std::size_t, std::pair<std::size_t, std::size_t>>;
static axes_map get_axes(instruction_ref ins)
{
axes_map result;
auto op = any_cast<op::slice>(ins->get_operator());
for(std::size_t i = 0; i < op.axes.size(); i++)
{
result[op.axes[i]] = std::make_pair(op.starts[i], op.ends[i]);
}
return result;
}
static axes_map merge(const axes_map& m1, const axes_map& m2)
{
axes_map result;
// Non overlapping
for(auto&& p : m1)
{
if(contains(m2, p.first))
continue;
result[p.first] = p.second;
}
for(auto&& p : m2)
{
if(contains(m1, p.first))
continue;
result[p.first] = p.second;
}
// Overlapping
for(auto&& p1 : m1)
{
if(not contains(m2, p1.first))
continue;
auto&& v1 = p1.second;
auto&& v2 = m2.at(p1.first);
auto start = v1.first + v2.first;
auto end = start + (v2.second - v2.first);
result[p1.first] = std::make_pair(start, end);
}
return result;
}
void apply(module& m, const match::matcher_result& mr) const
{
auto ins = mr.result;
auto slice = ins->inputs().front();
auto input = slice->inputs().front();
auto a1 = get_axes(ins);
auto a2 = get_axes(slice);
auto axes = merge(a2, a1);
auto op = op::slice{};
for(auto&& pp : axes)
{
op.axes.push_back(pp.first);
op.starts.push_back(pp.second.first);
op.ends.push_back(pp.second.second);
}
m.replace_instruction(ins, op, input);
}
};
struct find_concat_multibroadcasts
{
auto matcher() const
{
return match::name("concat")(match::all_of[match::inputs()](match::name("multibroadcast")));
}
void apply(module& m, const match::matcher_result& mr) const
{
auto ins = mr.result;
auto op = any_cast<op::concat>(ins->get_operator());
auto out_lens = ins->get_shape().lens();
auto inputs = ins->inputs();
auto in_strides = inputs.front()->get_shape().strides();
// Only apply when concat axis is not a broadcasted dimension
if(std::any_of(inputs.begin(), inputs.end(), [&](auto i) {
return i->get_shape().strides()[op.axis] == 0;
}))
{
return;
}
// Use inputs of multibroadcast ops as inputs to new concat op
std::transform(inputs.begin(), inputs.end(), inputs.begin(), [](auto i) {
return i->inputs().front();
});
// Reduce axis by number of leading broadcasted dimensions
if(inputs.front()->get_shape().lens().size() < out_lens.size())
op.axis -= std::count(in_strides.begin(), in_strides.begin() + op.axis, 0);
auto concat = m.insert_instruction(ins, op, inputs);
m.replace_instruction(
ins, migraphx::make_op("multibroadcast", {{"out_lens", out_lens}}), concat);
}
};
struct find_concat_transpose
{
auto matcher() const
{
return match::name("concat")(match::all_of[match::inputs()](match::name("transpose")));
}
void apply(module& m, const match::matcher_result& mr) const
{
auto ins = mr.result;
auto trans_inputs = ins->inputs();
auto s = trans_inputs.front()->get_shape();
assert(s.transposed());
auto op = any_cast<op::concat>(ins->get_operator());
auto permutation = find_permutation(s);
// permutation should be the same for all inputs
if(not std::all_of(trans_inputs.begin(), trans_inputs.end(), [&](auto in) {
return (find_permutation(in->get_shape()) == permutation);
}))
{
return;
}
// axis could be a negative value
int64_t n_dim = static_cast<int64_t>(s.lens().size());
op.axis = tune_axis(n_dim, op.axis, op.name());
auto ipermutation = invert_permutation(permutation);
op.axis = ipermutation[op.axis];
std::vector<instruction_ref> inputs;
std::transform(
ins->inputs().begin(), ins->inputs().end(), std::back_inserter(inputs), [&](auto i) {
return m.insert_instruction(
ins, make_op("transpose", {{"permutation", permutation}}), i);
});
auto concat = m.insert_instruction(ins, op, inputs);
auto t = m.insert_instruction(
ins, make_op("transpose", {{"permutation", ipermutation}}), concat);
assert(ins->get_shape().lens() == t->get_shape().lens());
m.replace_instruction(ins, t);
}
};
struct find_nested_concat
{
auto matcher() const
{
return match::name("concat")(match::any_of[match::inputs()](match::name("concat")));
}
static std::size_t get_axis(instruction_ref ins)
{
auto op = any_cast<op::concat>(ins->get_operator());
return op.axis;
}
void apply(module& m, const match::matcher_result& mr) const
{
auto ins = mr.result;
auto axis = get_axis(ins);
std::vector<instruction_ref> args;
fix([&](auto self, auto&& inputs) {
for(auto&& i : inputs)
{
if(i->name() == "concat" and get_axis(i) == axis and i->outputs().size() == 1)
self(i->inputs());
else
args.push_back(i);
}
})(ins->inputs());
m.replace_instruction(ins, ins->get_operator(), args);
}
};
struct find_resize
{
auto matcher() const
{
return match::name("gather")(
match::args(match::name("reshape").bind("data"), match::is_constant().bind("ind")));
}
void apply(module& m, const match::matcher_result& r) const
{
auto ins = r.result;
auto ins_rsp = r.instructions["data"];
auto ins_ind = r.instructions["ind"];
// resize input shape
if(ins_rsp->get_shape().lens().size() != 1)
{
return;
}
// resize output shape
const auto& in_shape = ins_rsp->inputs().front()->get_shape();
const auto& out_shape = ins->get_shape();
// check if output shape is multiple of input shape
const auto& in_lens = in_shape.lens();
const auto& out_lens = out_shape.lens();
if(in_lens.size() != out_lens.size())
{
return;
}
// output shape must be multiple of input shape
std::vector<bool> is_multi(in_lens.size());
std::transform(
in_lens.begin(), in_lens.end(), out_lens.begin(), is_multi.begin(), [](auto x, auto y) {
return (y % x == 0);
});
if(not std::all_of(is_multi.begin(), is_multi.end(), [](auto b) { return b; }))
{
return;
}
// output must be multiple of inputs
std::vector<std::size_t> scales(in_lens.size());
std::transform(
in_lens.begin(), in_lens.end(), out_lens.begin(), scales.begin(), [](auto x, auto y) {
return y / x;
});
// if ind is not constant, cannot optimize
std::vector<int> vec_ind;
auto arg_ind = ins_ind->eval();
if(arg_ind.empty())
{
return;
}
arg_ind.visit([&](auto v) { vec_ind.assign(v.begin(), v.end()); });
if(not all_of(range(out_shape.elements()), [&](auto i) {
auto out_idx = out_shape.multi(i);
auto in_idx = out_idx;
std::transform(out_idx.begin(),
out_idx.end(),
scales.begin(),
in_idx.begin(),
[&](auto io, auto scale) { return io - (io % scale); });
return vec_ind[i] == vec_ind[out_shape.index(in_idx)];
}))
{
return;
}
// wrap up shapes for multibroadcast
std::vector<std::pair<std::size_t, std::size_t>> dim_scales;
std::transform(in_lens.begin(),
in_lens.end(),
out_lens.begin(),
std::back_inserter(dim_scales),
[](auto x, auto y) { return std::make_pair(x, y / x); });
std::vector<int64_t> in_dims;
std::vector<int64_t> out_dims;
for(auto& isp : dim_scales)
{
in_dims.push_back(isp.first);
out_dims.push_back(isp.first * isp.second);
if(isp.first == 1 or isp.second == 1)
{
continue;
}
out_dims.back() = isp.first;
in_dims.push_back(1);
out_dims.push_back(isp.second);
}
auto in_rsp = ins_rsp->inputs().front();
auto rsp_data = m.insert_instruction(
ins_rsp, migraphx::make_op("reshape", {{"dims", in_dims}}), in_rsp);
auto mb_rsp = m.insert_instruction(
ins_rsp, migraphx::make_op("multibroadcast", {{"out_lens", out_dims}}), rsp_data);
auto std_mb = m.insert_instruction(ins, migraphx::make_op("contiguous"), mb_rsp);
std::vector<int64_t> rsp_dims(out_lens.begin(), out_lens.end());
m.replace_instruction(ins, migraphx::make_op("reshape", {{"dims", rsp_dims}}), std_mb);
}
};
struct find_where_op
{
auto matcher() const
{
return match::name("gather")(
match::args(match::name("reshape")(match::arg(0)(match::name("concat").bind("data"))),
match::is_constant().bind("ind")));
}
void apply(module& m, const match::matcher_result& r) const
{
auto ins = r.result;
auto concat = r.instructions["data"];
auto ins_ind = r.instructions["ind"];
std::vector<bool> vec_ind;
auto arg_ind = ins_ind->eval();
arg_ind.visit([&](auto v) { vec_ind.assign(v.begin(), v.end()); });
// ind has to be the same value
auto val = vec_ind.front();
if(not std::all_of(vec_ind.begin(), vec_ind.end(), [&](auto v) { return (v == val); }))
{
return;
}
// concat axis must be 0
auto op = any_cast<op::concat>(concat->get_operator());
if(op.axis != 0)
{
return;
}
// check concat inputs, it has to be 2 and have the same shape
const auto& inputs = concat->inputs();
if(inputs.size() != 2)
{
return;
}
if(inputs.at(0)->get_shape() != inputs.at(1)->get_shape())
{
return;
}
if(inputs.at(0)->get_shape().lens() != ins_ind->get_shape().lens())
{
return;
}
if(val)
{
m.replace_instruction(ins, inputs.at(0));
}
else
{
m.replace_instruction(ins, inputs.at(1));
}
}
};
struct find_reshape_cont
{
auto matcher() const
{
return match::pointwise(
match::nargs(2),
match::either_arg(0, 1)(
match::name("reshape")(match::args(match::name("contiguous").bind("cont")))
.bind("rsp"),
match::any()));
}
void apply(module& m, const match::matcher_result& r) const
{
auto ins = r.result;
auto ins_cont = r.instructions["cont"];
auto in_ins = r.instructions["rsp"];
auto cont_input = ins_cont->inputs().front();
auto lens = cont_input->get_shape().lens();
std::vector<int64_t> dims(lens.begin(), lens.end());
if(in_ins->get_shape() != ins->get_shape())
{
return;
}
if(not std::all_of(ins->inputs().begin(), ins->inputs().end(), [](auto i) {
return i->get_shape().standard();
}))
{
return;
}
auto out_lens = ins->get_shape().lens();
std::vector<int64_t> out_dims(out_lens.begin(), out_lens.end());
std::vector<instruction_ref> inputs;
for(const auto& in : ins->inputs())
{
if(in == in_ins)
{
inputs.push_back(cont_input);
}
else
{
inputs.push_back(
m.insert_instruction(ins, make_op("reshape", {{"dims", dims}}), in));
}
}
auto out = m.insert_instruction(ins, ins->get_operator(), inputs);
m.replace_instruction(ins, make_op("reshape", {{"dims", out_dims}}), out);
}
};
// match sequence of transpose --> contiguous --> reshaper_op
auto match_transpose_contiguous_reshaper()
{
return match::name({"reshape", "squeeze", "unsqueeze"})(
match::used_once(),
match::args(
match::name("contiguous")(
match::used_once(), match::args(match::transpose_shape().bind("trans_ins")))
.bind("cont_ins")))
.bind("reshaper_ins");
};
// finds the pattern of transpose --> contiguous --> reshaper_op --> unary
// application of this matcher moves the unary operation before the contiguous so it becomes
// transpose --> unary --> contiguous --> reshaper_op. later pointwise sub-module can be created out
// of unary --> contiguous --> reshaper_op. Such pattern appears in depthToSpace or spaceToDepth
// operator.
struct find_transpose_contiguous_reshaper_unary
{
auto matcher() const
{
return pointwise(match::used_once(),
match::nargs(1),
match::args(match_transpose_contiguous_reshaper()));
}
void apply(module& m, const match::matcher_result& r) const
{
auto ins = r.result;
auto reshaper_ins = r.instructions["reshaper_ins"];
auto trans_ins = r.instructions["trans_ins"];
auto cont_ins = r.instructions["cont_ins"];
auto unary_op_name = ins->get_operator().name();
auto unary_ins = m.insert_instruction(cont_ins, make_op(unary_op_name), trans_ins);
auto new_cont_ins = m.insert_instruction(cont_ins, make_op("contiguous"), unary_ins);
// older cont and reshape are removed by deadcode elimination
m.replace_instruction(ins, reshaper_ins->get_operator(), new_cont_ins);
}
};
struct find_slice_transpose
{
auto matcher() const
{
return match::any(match::any_of[match::outputs()](
match::name("slice")(match::output(match::name("transpose")))));
}
static std::vector<int64_t> find_common_perm(const std::vector<instruction_ref>& transposes)
{
std::map<std::vector<int64_t>, int64_t> count;
for(auto t : transposes)
{
auto perm = t->get_operator().to_value()["permutation"].to_vector<int64_t>();
count[perm]++;
}
return std::max_element(
count.begin(), count.end(), by(std::less<>{}, [](auto&& p) { return p.second; }))
->first;
}
void apply(module& m, const match::matcher_result& r) const
{
auto ins = r.result;
std::vector<instruction_ref> splits;
std::copy_if(ins->outputs().begin(),
ins->outputs().end(),
std::back_inserter(splits),
[&](instruction_ref out) {
return out->name() == "slice" and out->outputs().size() == 1 and
out->outputs().front()->name() == "transpose";
});
if(splits.size() < 2)
return;
std::vector<instruction_ref> transposes;
std::transform(splits.begin(),
splits.end(),
std::back_inserter(transposes),
[](auto split) { return split->outputs().front(); });
auto perm = find_common_perm(transposes);
auto iperm = invert_permutation(perm);
auto pre = m.insert_instruction(
std::next(ins), make_op("transpose", {{"permutation", perm}}), ins);
for(auto i : range(transposes.size()))
{
auto split = splits[i];
auto t = transposes[i];
auto op = any_cast<op::slice>(split->get_operator());
std::transform(op.axes.begin(), op.axes.end(), op.axes.begin(), [&](auto axis) {
return iperm[axis];
});
auto new_ins = m.insert_instruction(t, op, pre);
if(t->get_operator() != pre->get_operator())
{
auto curr = t->get_operator().to_value()["permutation"].to_vector<int64_t>();
new_ins = m.insert_instruction(
t, make_op("transpose", {{"permutation", reorder_dims(iperm, curr)}}), new_ins);
}
m.replace_instruction(t, new_ins);
}
}
};
struct find_transpose_slice
{
auto matcher() const
{
return match::name("transpose")(match::all_of[match::outputs()](match::name("slice")));
}
static std::vector<int64_t> slice_distance(const op::slice& op)
{
assert(op.starts.size() == op.ends.size());
std::vector<int64_t> result(op.starts.size());
std::transform(
op.ends.begin(), op.ends.end(), op.starts.begin(), result.begin(), std::minus<>{});
return result;
}
void apply(module& m, const match::matcher_result& r) const
{
auto ins = r.result;
auto slices = ins->outputs();
if(slices.empty())
return;
auto slice = any_cast<op::slice>(slices.front()->get_operator());
auto sdistance = slice_distance(slice);
// Check all distances and axes are the same
if(std::any_of(slices.begin(), slices.end(), [&](auto sins) {
auto s = any_cast<op::slice>(sins->get_operator());
return s.axes != slice.axes or slice_distance(s) != sdistance;
}))
return;
// Check distances are divisible by lens of corresponding axes
auto mod_by_distance = [&](const auto& v, auto f) {
return std::inner_product(v.begin(),
v.end(),
sdistance.begin(),
0,
std::plus<>{},
[&](auto x, auto d) -> uint64_t {
if(d == 0)
return 1;
return f(x) % d;
});
};
if(mod_by_distance(slice.axes, [&](auto x) { return ins->get_shape().lens()[x]; }) != 0 or
mod_by_distance(slice.starts, id{}) != 0 or mod_by_distance(slice.ends, id{}) != 0)
return;
// TODO: Handle multiple axes
if(sdistance.size() != 1)
return;
auto axis = slice.axes.front();
// Skip if axis would be packed
if(std::all_of(ins->get_shape().lens().begin(),
ins->get_shape().lens().begin() + axis,
[](auto x) { return x == 1; }))
return;
// Compute axis before transpose to use for unsqueeze
auto perm = ins->get_operator().to_value()["permutation"].to_vector<int64_t>();
auto preaxis = perm[axis];
// Make unsqueeze
std::vector<int64_t> steps(sdistance.size());
std::transform(
slice.axes.begin(),
slice.axes.end(),
sdistance.begin(),
steps.begin(),
[&](const auto ax, const auto sdis) { return ins->get_shape().lens().at(ax) / sdis; });
auto unsqueeze = m.insert_instruction(
ins, make_op("unsqueeze", {{"axes", {preaxis}}, {"steps", steps}}), ins->inputs());
// Make transpose
std::transform(perm.begin(), perm.end(), perm.begin(), [&](auto i) {
if(i >= preaxis)
return i + 1;
return i;
});
perm.insert(perm.begin(), preaxis);
auto transpose =
m.insert_instruction(ins, make_op("transpose", {{"permutation", perm}}), unsqueeze);
// Slice and squeeze
for(auto s : slices)
{
auto op = any_cast<op::slice>(s->get_operator());
op.axes = {0};
op.starts = {op.starts.front() / sdistance.front()};
op.ends = {op.ends.front() / sdistance.front()};
auto slice_ins = m.insert_instruction(ins, op, transpose);
auto squeeze =
m.insert_instruction(ins, make_op("squeeze", {{"axes", {0}}}), slice_ins);
m.replace_instruction(s, squeeze);
}
}
};
void simplify_reshapes::apply(module& m) const
{
for(int i = 0; i < depth; i++)
{
match::find_matches(m,
find_where_op{},
find_resize{},
find_nop_reshapes{},
find_reshaper{},
find_reshape_cont{},
find_transpose{},
find_concat_transpose{},
find_concat_multibroadcasts{},
find_nested_convert{},
find_nested_slice{},
find_nested_concat{},
find_transpose_slice{},
find_slice_transpose{},
find_transpose_contiguous_reshaper_unary{});
dead_code_elimination{}.apply(m);
}
}
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx