forked from bowang-lab/MedSAM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbuild_sam.py
146 lines (131 loc) · 4.65 KB
/
build_sam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
# -*- coding: utf-8 -*-
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from functools import partial
from pathlib import Path
import urllib.request
import torch
from .modeling import (
ImageEncoderViT,
MaskDecoder,
PromptEncoder,
Sam,
TwoWayTransformer,
)
def build_sam_vit_h(checkpoint=None):
return _build_sam(
encoder_embed_dim=1280,
encoder_depth=32,
encoder_num_heads=16,
encoder_global_attn_indexes=[7, 15, 23, 31],
checkpoint=checkpoint,
)
build_sam = build_sam_vit_h
def build_sam_vit_l(checkpoint=None):
return _build_sam(
encoder_embed_dim=1024,
encoder_depth=24,
encoder_num_heads=16,
encoder_global_attn_indexes=[5, 11, 17, 23],
checkpoint=checkpoint,
)
def build_sam_vit_b(checkpoint=None):
return _build_sam(
encoder_embed_dim=768,
encoder_depth=12,
encoder_num_heads=12,
encoder_global_attn_indexes=[2, 5, 8, 11],
checkpoint=checkpoint,
)
sam_model_registry = {
"default": build_sam_vit_h,
"vit_h": build_sam_vit_h,
"vit_l": build_sam_vit_l,
"vit_b": build_sam_vit_b,
}
def _build_sam(
encoder_embed_dim,
encoder_depth,
encoder_num_heads,
encoder_global_attn_indexes,
checkpoint=None,
):
prompt_embed_dim = 256
image_size = 1024
vit_patch_size = 16
image_embedding_size = image_size // vit_patch_size
sam = Sam(
image_encoder=ImageEncoderViT(
depth=encoder_depth,
embed_dim=encoder_embed_dim,
img_size=image_size,
mlp_ratio=4,
norm_layer=partial(torch.nn.LayerNorm, eps=1e-6),
num_heads=encoder_num_heads,
patch_size=vit_patch_size,
qkv_bias=True,
use_rel_pos=True,
global_attn_indexes=encoder_global_attn_indexes,
window_size=14,
out_chans=prompt_embed_dim,
),
prompt_encoder=PromptEncoder(
embed_dim=prompt_embed_dim,
image_embedding_size=(image_embedding_size, image_embedding_size),
input_image_size=(image_size, image_size),
mask_in_chans=16,
),
mask_decoder=MaskDecoder(
num_multimask_outputs=3,
transformer=TwoWayTransformer(
depth=2,
embedding_dim=prompt_embed_dim,
mlp_dim=2048,
num_heads=8,
),
transformer_dim=prompt_embed_dim,
iou_head_depth=3,
iou_head_hidden_dim=256,
),
pixel_mean=[123.675, 116.28, 103.53],
pixel_std=[58.395, 57.12, 57.375],
)
sam.eval()
checkpoint = Path(checkpoint)
if checkpoint.name == "sam_vit_b_01ec64.pth" and not checkpoint.exists():
cmd = input("Download sam_vit_b_01ec64.pth from facebook AI? [y]/n: ")
if len(cmd) == 0 or cmd.lower() == "y":
checkpoint.parent.mkdir(parents=True, exist_ok=True)
print("Downloading SAM ViT-B checkpoint...")
urllib.request.urlretrieve(
"https://dl.fbaipublicfiles.com/segment_anything/sam_vit_b_01ec64.pth",
checkpoint,
)
print(checkpoint.name, " is downloaded!")
elif checkpoint.name == "sam_vit_h_4b8939.pth" and not checkpoint.exists():
cmd = input("Download sam_vit_h_4b8939.pth from facebook AI? [y]/n: ")
if len(cmd) == 0 or cmd.lower() == "y":
checkpoint.parent.mkdir(parents=True, exist_ok=True)
print("Downloading SAM ViT-H checkpoint...")
urllib.request.urlretrieve(
"https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth",
checkpoint,
)
print(checkpoint.name, " is downloaded!")
elif checkpoint.name == "sam_vit_l_0b3195.pth" and not checkpoint.exists():
cmd = input("Download sam_vit_l_0b3195.pth from facebook AI? [y]/n: ")
if len(cmd) == 0 or cmd.lower() == "y":
checkpoint.parent.mkdir(parents=True, exist_ok=True)
print("Downloading SAM ViT-L checkpoint...")
urllib.request.urlretrieve(
"https://dl.fbaipublicfiles.com/segment_anything/sam_vit_l_0b3195.pth",
checkpoint,
)
print(checkpoint.name, " is downloaded!")
if checkpoint is not None:
with open(checkpoint, "rb") as f:
state_dict = torch.load(f, map_location=torch.device('cpu'))
sam.load_state_dict(state_dict)
return sam