forked from zephyrproject-rtos/zephyr
-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathspi_pl022.c
981 lines (825 loc) · 26.7 KB
/
spi_pl022.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
/*
* Copyright 2022 TOKITA Hiroshi <[email protected]>
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT arm_pl022
#include <errno.h>
#include <zephyr/kernel.h>
#include <zephyr/drivers/spi.h>
#include <zephyr/sys/util.h>
#include <zephyr/spinlock.h>
#include <soc.h>
#if defined(CONFIG_PINCTRL)
#include <zephyr/drivers/pinctrl.h>
#endif
#if defined(CONFIG_SPI_PL022_DMA)
#include <zephyr/drivers/dma.h>
#endif
#define LOG_LEVEL CONFIG_SPI_LOG_LEVEL
#include <zephyr/logging/log.h>
#include <zephyr/irq.h>
LOG_MODULE_REGISTER(spi_pl022);
#include "spi_context.h"
#define SSP_MASK(regname, name) GENMASK(SSP_##regname##_##name##_MSB, SSP_##regname##_##name##_LSB)
/* PL022 Register definitions */
/*
* Macros to access SSP Registers with their offsets
*/
#define SSP_CR0(r) (r + 0x000)
#define SSP_CR1(r) (r + 0x004)
#define SSP_DR(r) (r + 0x008)
#define SSP_SR(r) (r + 0x00C)
#define SSP_CPSR(r) (r + 0x010)
#define SSP_IMSC(r) (r + 0x014)
#define SSP_RIS(r) (r + 0x018)
#define SSP_MIS(r) (r + 0x01C)
#define SSP_ICR(r) (r + 0x020)
#define SSP_DMACR(r) (r + 0x024)
/*
* Control Register 0
*/
#define SSP_CR0_SCR_MSB 15
#define SSP_CR0_SCR_LSB 8
#define SSP_CR0_SPH_MSB 7
#define SSP_CR0_SPH_LSB 7
#define SSP_CR0_SPO_MSB 6
#define SSP_CR0_SPO_LSB 6
#define SSP_CR0_FRF_MSB 5
#define SSP_CR0_FRF_LSB 4
#define SSP_CR0_DSS_MSB 3
#define SSP_CR0_DSS_LSB 0
/* Data size select */
#define SSP_CR0_MASK_DSS SSP_MASK(CR0, DSS)
/* Frame format */
#define SSP_CR0_MASK_FRF SSP_MASK(CR0, FRF)
/* Polarity */
#define SSP_CR0_MASK_SPO SSP_MASK(CR0, SPO)
/* Phase */
#define SSP_CR0_MASK_SPH SSP_MASK(CR0, SPH)
/* Serial Clock Rate */
#define SSP_CR0_MASK_SCR SSP_MASK(CR0, SCR)
/*
* Control Register 1
*/
#define SSP_CR1_SOD_MSB 3
#define SSP_CR1_SOD_LSB 3
#define SSP_CR1_MS_MSB 2
#define SSP_CR1_MS_LSB 2
#define SSP_CR1_SSE_MSB 1
#define SSP_CR1_SSE_LSB 1
#define SSP_CR1_LBM_MSB 0
#define SSP_CR1_LBM_LSB 0
/* Loopback Mode */
#define SSP_CR1_MASK_LBM SSP_MASK(CR1, LBM)
/* Port Enable */
#define SSP_CR1_MASK_SSE SSP_MASK(CR1, SSE)
/* Controller/Peripheral (Master/Slave) select */
#define SSP_CR1_MASK_MS SSP_MASK(CR1, MS)
/* Peripheral (Slave) mode output disabled */
#define SSP_CR1_MASK_SOD SSP_MASK(CR1, SOD)
/*
* Status Register
*/
#define SSP_SR_BSY_MSB 4
#define SSP_SR_BSY_LSB 4
#define SSP_SR_RFF_MSB 3
#define SSP_SR_RFF_LSB 3
#define SSP_SR_RNE_MSB 2
#define SSP_SR_RNE_LSB 2
#define SSP_SR_TNF_MSB 1
#define SSP_SR_TNF_LSB 1
#define SSP_SR_TFE_MSB 0
#define SSP_SR_TFE_LSB 0
/* TX FIFO empty */
#define SSP_SR_MASK_TFE SSP_MASK(SR, TFE)
/* TX FIFO not full */
#define SSP_SR_MASK_TNF SSP_MASK(SR, TNF)
/* RX FIFO not empty */
#define SSP_SR_MASK_RNE SSP_MASK(SR, RNE)
/* RX FIFO full */
#define SSP_SR_MASK_RFF SSP_MASK(SR, RFF)
/* Busy Flag */
#define SSP_SR_MASK_BSY SSP_MASK(SR, BSY)
/*
* Clock Prescale Register
*/
#define SSP_CPSR_CPSDVSR_MSB 7
#define SSP_CPSR_CPSDVSR_LSB 0
/* Clock prescale divider */
#define SSP_CPSR_MASK_CPSDVSR SSP_MASK(CPSR, CPSDVSR)
/*
* Interrupt Mask Set/Clear Register
*/
#define SSP_IMSC_TXIM_MSB 3
#define SSP_IMSC_TXIM_LSB 3
#define SSP_IMSC_RXIM_MSB 2
#define SSP_IMSC_RXIM_LSB 2
#define SSP_IMSC_RTIM_MSB 1
#define SSP_IMSC_RTIM_LSB 1
#define SSP_IMSC_RORIM_MSB 0
#define SSP_IMSC_RORIM_LSB 0
/* Receive Overrun Interrupt mask */
#define SSP_IMSC_MASK_RORIM SSP_MASK(IMSC, RORIM)
/* Receive timeout Interrupt mask */
#define SSP_IMSC_MASK_RTIM SSP_MASK(IMSC, RTIM)
/* Receive FIFO Interrupt mask */
#define SSP_IMSC_MASK_RXIM SSP_MASK(IMSC, RXIM)
/* Transmit FIFO Interrupt mask */
#define SSP_IMSC_MASK_TXIM SSP_MASK(IMSC, TXIM)
/*
* Raw Interrupt Status Register
*/
#define SSP_RIS_TXRIS_MSB 3
#define SSP_RIS_TXRIS_LSB 3
#define SSP_RIS_RXRIS_MSB 2
#define SSP_RIS_RXRIS_LSB 2
#define SSP_RIS_RTRIS_MSB 1
#define SSP_RIS_RTRIS_LSB 1
#define SSP_RIS_RORRIS_MSB 0
#define SSP_RIS_RORRIS_LSB 0
/* Receive Overrun Raw Interrupt status */
#define SSP_RIS_MASK_RORRIS SSP_MASK(RIS, RORRIS)
/* Receive Timeout Raw Interrupt status */
#define SSP_RIS_MASK_RTRIS SSP_MASK(RIS, RTRIS)
/* Receive FIFO Raw Interrupt status */
#define SSP_RIS_MASK_RXRIS SSP_MASK(RIS, RXRIS)
/* Transmit FIFO Raw Interrupt status */
#define SSP_RIS_MASK_TXRIS SSP_MASK(RIS, TXRIS)
/*
* Masked Interrupt Status Register
*/
#define SSP_MIS_TXMIS_MSB 3
#define SSP_MIS_TXMIS_LSB 3
#define SSP_MIS_RXMIS_MSB 2
#define SSP_MIS_RXMIS_LSB 2
#define SSP_MIS_RTMIS_MSB 1
#define SSP_MIS_RTMIS_LSB 1
#define SSP_MIS_RORMIS_MSB 0
#define SSP_MIS_RORMIS_LSB 0
/* Receive Overrun Masked Interrupt status */
#define SSP_MIS_MASK_RORMIS SSP_MASK(MIS, RORMIS)
/* Receive Timeout Masked Interrupt status */
#define SSP_MIS_MASK_RTMIS SSP_MASK(MIS, RTMIS)
/* Receive FIFO Masked Interrupt status */
#define SSP_MIS_MASK_RXMIS SSP_MASK(MIS, RXMIS)
/* Transmit FIFO Masked Interrupt status */
#define SSP_MIS_MASK_TXMIS SSP_MASK(MIS, TXMIS)
/*
* Interrupt Clear Register
*/
#define SSP_ICR_RTIC_MSB 1
#define SSP_ICR_RTIC_LSB 1
#define SSP_ICR_RORIC_MSB 0
#define SSP_ICR_RORIC_LSB 0
/* Receive Overrun Raw Clear Interrupt bit */
#define SSP_ICR_MASK_RORIC SSP_MASK(ICR, RORIC)
/* Receive Timeout Clear Interrupt bit */
#define SSP_ICR_MASK_RTIC SSP_MASK(ICR, RTIC)
/*
* DMA Control Register
*/
#define SSP_DMACR_TXDMAE_MSB 1
#define SSP_DMACR_TXDMAE_LSB 1
#define SSP_DMACR_RXDMAE_MSB 0
#define SSP_DMACR_RXDMAE_LSB 0
/* Receive DMA Enable bit */
#define SSP_DMACR_MASK_RXDMAE SSP_MASK(DMACR, RXDMAE)
/* Transmit DMA Enable bit */
#define SSP_DMACR_MASK_TXDMAE SSP_MASK(DMACR, TXDMAE)
/* End register definitions */
/*
* Clock Parameter ranges
*/
#define CPSDVR_MIN 0x02
#define CPSDVR_MAX 0xFE
#define SCR_MIN 0x00
#define SCR_MAX 0xFF
/* Fifo depth */
#define SSP_FIFO_DEPTH 8
/*
* Register READ/WRITE macros
*/
#define SSP_READ_REG(reg) (*((volatile uint32_t *)reg))
#define SSP_WRITE_REG(reg, val) (*((volatile uint32_t *)reg) = val)
#define SSP_CLEAR_REG(reg, val) (*((volatile uint32_t *)reg) &= ~(val))
/*
* Status check macros
*/
#define SSP_BUSY(reg) (SSP_READ_REG(SSP_SR(reg)) & SSP_SR_MASK_BSY)
#define SSP_RX_FIFO_NOT_EMPTY(reg) (SSP_READ_REG(SSP_SR(reg)) & SSP_SR_MASK_RNE)
#define SSP_TX_FIFO_EMPTY(reg) (SSP_READ_REG(SSP_SR(reg)) & SSP_SR_MASK_TFE)
#define SSP_TX_FIFO_NOT_FULL(reg) (SSP_READ_REG(SSP_SR(reg)) & SSP_SR_MASK_TNF)
#if defined(CONFIG_SPI_PL022_DMA)
enum spi_pl022_dma_direction {
TX = 0,
RX,
NUM_OF_DIRECTION
};
struct spi_pl022_dma_config {
const struct device *dev;
uint32_t channel;
uint32_t channel_config;
uint32_t slot;
};
struct spi_pl022_dma_data {
struct dma_config config;
struct dma_block_config block;
uint32_t count;
bool callbacked;
};
#endif
/*
* Max frequency
*/
#define MAX_FREQ_CONTROLLER_MODE(cfg) (cfg->pclk / 2)
#define MAX_FREQ_PERIPHERAL_MODE(cfg) (cfg->pclk / 12)
struct spi_pl022_cfg {
const uint32_t reg;
const uint32_t pclk;
const bool dma_enabled;
#if defined(CONFIG_PINCTRL)
const struct pinctrl_dev_config *pincfg;
#endif
#if defined(CONFIG_SPI_PL022_INTERRUPT)
void (*irq_config)(const struct device *port);
#endif
#if defined(CONFIG_SPI_PL022_DMA)
const struct spi_pl022_dma_config dma[NUM_OF_DIRECTION];
#endif
};
struct spi_pl022_data {
struct spi_context ctx;
uint32_t tx_count;
uint32_t rx_count;
struct k_spinlock lock;
#if defined(CONFIG_SPI_PL022_DMA)
struct spi_pl022_dma_data dma[NUM_OF_DIRECTION];
#endif
};
#if defined(CONFIG_SPI_PL022_DMA)
static uint32_t dummy_tx;
static uint32_t dummy_rx;
#endif
/* Helper Functions */
static inline uint32_t spi_pl022_calc_prescale(const uint32_t pclk, const uint32_t baud)
{
uint32_t prescale;
/* prescale only can take even number */
for (prescale = CPSDVR_MIN; prescale < CPSDVR_MAX; prescale += 2) {
if (pclk < (prescale + 2) * CPSDVR_MAX * baud) {
break;
}
}
return prescale;
}
static inline uint32_t spi_pl022_calc_postdiv(const uint32_t pclk,
const uint32_t baud, const uint32_t prescale)
{
uint32_t postdiv;
for (postdiv = SCR_MAX + 1; postdiv > SCR_MIN + 1; --postdiv) {
if (pclk / (prescale * (postdiv - 1)) > baud) {
break;
}
}
return postdiv - 1;
}
static int spi_pl022_configure(const struct device *dev,
const struct spi_config *spicfg)
{
const struct spi_pl022_cfg *cfg = dev->config;
struct spi_pl022_data *data = dev->data;
const uint16_t op = spicfg->operation;
uint32_t prescale;
uint32_t postdiv;
uint32_t cr0;
uint32_t cr1;
if (spi_context_configured(&data->ctx, spicfg)) {
return 0;
}
if (spicfg->frequency > MAX_FREQ_CONTROLLER_MODE(cfg)) {
LOG_ERR("Frequency is up to %u in controller mode.", MAX_FREQ_CONTROLLER_MODE(cfg));
return -ENOTSUP;
}
if (op & SPI_TRANSFER_LSB) {
LOG_ERR("LSB-first not supported");
return -ENOTSUP;
}
/* Half-duplex mode has not been implemented */
if (op & SPI_HALF_DUPLEX) {
LOG_ERR("Half-duplex not supported");
return -ENOTSUP;
}
/* Peripheral mode has not been implemented */
if (SPI_OP_MODE_GET(op) != SPI_OP_MODE_MASTER) {
LOG_ERR("Peripheral mode is not supported");
return -ENOTSUP;
}
/* Word sizes other than 8 bits has not been implemented */
if (SPI_WORD_SIZE_GET(op) != 8) {
LOG_ERR("Word sizes other than 8 bits are not supported");
return -ENOTSUP;
}
/* configure registers */
prescale = spi_pl022_calc_prescale(cfg->pclk, spicfg->frequency);
postdiv = spi_pl022_calc_postdiv(cfg->pclk, spicfg->frequency, prescale);
cr0 = 0;
cr0 |= (postdiv << SSP_CR0_SCR_LSB);
cr0 |= (SPI_WORD_SIZE_GET(op) - 1);
cr0 |= (op & SPI_MODE_CPOL) ? SSP_CR0_MASK_SPO : 0;
cr0 |= (op & SPI_MODE_CPHA) ? SSP_CR0_MASK_SPH : 0;
cr1 = 0;
cr1 |= SSP_CR1_MASK_SSE; /* Always enable SPI */
cr1 |= (op & SPI_MODE_LOOP) ? SSP_CR1_MASK_LBM : 0;
SSP_WRITE_REG(SSP_CPSR(cfg->reg), prescale);
SSP_WRITE_REG(SSP_CR0(cfg->reg), cr0);
SSP_WRITE_REG(SSP_CR1(cfg->reg), cr1);
#if defined(CONFIG_SPI_PL022_INTERRUPT)
if (!cfg->dma_enabled) {
SSP_WRITE_REG(SSP_IMSC(cfg->reg),
SSP_IMSC_MASK_RORIM | SSP_IMSC_MASK_RTIM | SSP_IMSC_MASK_RXIM);
}
#endif
data->ctx.config = spicfg;
return 0;
}
static inline bool spi_pl022_transfer_ongoing(struct spi_pl022_data *data)
{
return spi_context_tx_on(&data->ctx) || spi_context_rx_on(&data->ctx);
}
#if defined(CONFIG_SPI_PL022_DMA)
static void spi_pl022_dma_callback(const struct device *dma_dev, void *arg, uint32_t channel,
int status);
static size_t spi_pl022_dma_enabled_num(const struct device *dev)
{
const struct spi_pl022_cfg *cfg = dev->config;
return cfg->dma_enabled ? 2 : 0;
}
static uint32_t spi_pl022_dma_setup(const struct device *dev, const uint32_t dir)
{
const struct spi_pl022_cfg *cfg = dev->config;
struct spi_pl022_data *data = dev->data;
struct dma_config *dma_cfg = &data->dma[dir].config;
struct dma_block_config *block_cfg = &data->dma[dir].block;
const struct spi_pl022_dma_config *dma = &cfg->dma[dir];
int ret;
memset(dma_cfg, 0, sizeof(struct dma_config));
memset(block_cfg, 0, sizeof(struct dma_block_config));
dma_cfg->source_burst_length = 1;
dma_cfg->dest_burst_length = 1;
dma_cfg->user_data = (void *)dev;
dma_cfg->block_count = 1U;
dma_cfg->head_block = block_cfg;
dma_cfg->dma_slot = cfg->dma[dir].slot;
dma_cfg->channel_direction = dir == TX ? MEMORY_TO_PERIPHERAL : PERIPHERAL_TO_MEMORY;
if (SPI_WORD_SIZE_GET(data->ctx.config->operation) == 8) {
dma_cfg->source_data_size = 1;
dma_cfg->dest_data_size = 1;
} else {
dma_cfg->source_data_size = 2;
dma_cfg->dest_data_size = 2;
}
block_cfg->block_size = spi_context_max_continuous_chunk(&data->ctx);
if (dir == TX) {
dma_cfg->dma_callback = spi_pl022_dma_callback;
block_cfg->dest_address = SSP_DR(cfg->reg);
block_cfg->dest_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
if (spi_context_tx_buf_on(&data->ctx)) {
block_cfg->source_address = (uint32_t)data->ctx.tx_buf;
block_cfg->source_addr_adj = DMA_ADDR_ADJ_INCREMENT;
} else {
block_cfg->source_address = (uint32_t)&dummy_tx;
block_cfg->source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
}
}
if (dir == RX) {
dma_cfg->dma_callback = spi_pl022_dma_callback;
block_cfg->source_address = SSP_DR(cfg->reg);
block_cfg->source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
if (spi_context_rx_buf_on(&data->ctx)) {
block_cfg->dest_address = (uint32_t)data->ctx.rx_buf;
block_cfg->dest_addr_adj = DMA_ADDR_ADJ_INCREMENT;
} else {
block_cfg->dest_address = (uint32_t)&dummy_rx;
block_cfg->dest_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
}
}
ret = dma_config(dma->dev, dma->channel, dma_cfg);
if (ret < 0) {
LOG_ERR("dma_config %p failed %d\n", dma->dev, ret);
return ret;
}
data->dma[dir].callbacked = false;
ret = dma_start(dma->dev, dma->channel);
if (ret < 0) {
LOG_ERR("dma_start %p failed %d\n", dma->dev, ret);
return ret;
}
return 0;
}
static int spi_pl022_start_dma_transceive(const struct device *dev)
{
const struct spi_pl022_cfg *cfg = dev->config;
int ret = 0;
SSP_CLEAR_REG(SSP_DMACR(cfg->reg), SSP_DMACR_MASK_RXDMAE | SSP_DMACR_MASK_TXDMAE);
for (size_t i = 0; i < spi_pl022_dma_enabled_num(dev); i++) {
ret = spi_pl022_dma_setup(dev, i);
if (ret < 0) {
goto on_error;
}
}
SSP_WRITE_REG(SSP_DMACR(cfg->reg), SSP_DMACR_MASK_RXDMAE | SSP_DMACR_MASK_TXDMAE);
on_error:
if (ret < 0) {
for (size_t i = 0; i < spi_pl022_dma_enabled_num(dev); i++) {
dma_stop(cfg->dma[i].dev, cfg->dma[i].channel);
}
}
return ret;
}
static bool spi_pl022_chunk_transfer_finished(const struct device *dev)
{
struct spi_pl022_data *data = dev->data;
struct spi_pl022_dma_data *dma = data->dma;
const size_t chunk_len = spi_context_max_continuous_chunk(&data->ctx);
return (MIN(dma[TX].count, dma[RX].count) >= chunk_len);
}
static void spi_pl022_complete(const struct device *dev, int status)
{
struct spi_pl022_data *data = dev->data;
const struct spi_pl022_cfg *cfg = dev->config;
for (size_t i = 0; i < spi_pl022_dma_enabled_num(dev); i++) {
dma_stop(cfg->dma[i].dev, cfg->dma[i].channel);
}
spi_context_complete(&data->ctx, dev, status);
}
static void spi_pl022_dma_callback(const struct device *dma_dev, void *arg, uint32_t channel,
int status)
{
const struct device *dev = (const struct device *)arg;
const struct spi_pl022_cfg *cfg = dev->config;
struct spi_pl022_data *data = dev->data;
bool complete = false;
k_spinlock_key_t key;
size_t chunk_len;
int err = 0;
if (status < 0) {
key = k_spin_lock(&data->lock);
LOG_ERR("dma:%p ch:%d callback gets error: %d", dma_dev, channel, status);
spi_pl022_complete(dev, status);
k_spin_unlock(&data->lock, key);
return;
}
key = k_spin_lock(&data->lock);
chunk_len = spi_context_max_continuous_chunk(&data->ctx);
for (size_t i = 0; i < ARRAY_SIZE(cfg->dma); i++) {
if (dma_dev == cfg->dma[i].dev && channel == cfg->dma[i].channel) {
data->dma[i].count += chunk_len;
data->dma[i].callbacked = true;
}
}
/* Check transfer finished.
* The transmission of this chunk is complete if both the dma[TX].count
* and the dma[RX].count reach greater than or equal to the chunk_len.
* chunk_len is zero here means the transfer is already complete.
*/
if (spi_pl022_chunk_transfer_finished(dev)) {
if (SPI_WORD_SIZE_GET(data->ctx.config->operation) == 8) {
spi_context_update_tx(&data->ctx, 1, chunk_len);
spi_context_update_rx(&data->ctx, 1, chunk_len);
} else {
spi_context_update_tx(&data->ctx, 2, chunk_len);
spi_context_update_rx(&data->ctx, 2, chunk_len);
}
if (spi_pl022_transfer_ongoing(data)) {
/* Next chunk is available, reset the count and
* continue processing
*/
data->dma[TX].count = 0;
data->dma[RX].count = 0;
} else {
/* All data is processed, complete the process */
complete = true;
}
}
if (!complete && data->dma[TX].callbacked && data->dma[RX].callbacked) {
err = spi_pl022_start_dma_transceive(dev);
if (err) {
complete = true;
}
}
if (complete) {
spi_pl022_complete(dev, err);
}
k_spin_unlock(&data->lock, key);
}
#endif /* DMA */
#if defined(CONFIG_SPI_PL022_INTERRUPT)
static void spi_pl022_async_xfer(const struct device *dev)
{
const struct spi_pl022_cfg *cfg = dev->config;
struct spi_pl022_data *data = dev->data;
struct spi_context *ctx = &data->ctx;
/* Process by per chunk */
size_t chunk_len = spi_context_max_continuous_chunk(ctx);
uint32_t txrx;
/* Read RX FIFO */
while (SSP_RX_FIFO_NOT_EMPTY(cfg->reg) && (data->rx_count < chunk_len)) {
txrx = SSP_READ_REG(SSP_DR(cfg->reg));
/* Discard received data if rx buffer not assigned */
if (ctx->rx_buf) {
*(((uint8_t *)ctx->rx_buf) + data->rx_count) = (uint8_t)txrx;
}
data->rx_count++;
}
/* Check transfer finished.
* The transmission of this chunk is complete if both the tx_count
* and the rx_count reach greater than or equal to the chunk_len.
* chunk_len is zero here means the transfer is already complete.
*/
if (MIN(data->tx_count, data->rx_count) >= chunk_len && chunk_len > 0) {
spi_context_update_tx(ctx, 1, chunk_len);
spi_context_update_rx(ctx, 1, chunk_len);
if (spi_pl022_transfer_ongoing(data)) {
/* Next chunk is available, reset the count and continue processing */
data->tx_count = 0;
data->rx_count = 0;
chunk_len = spi_context_max_continuous_chunk(ctx);
} else {
/* All data is processed, complete the process */
spi_context_complete(ctx, dev, 0);
return;
}
}
/* Fill up TX FIFO */
for (uint32_t i = 0; i < SSP_FIFO_DEPTH; i++) {
if ((data->tx_count < chunk_len) && SSP_TX_FIFO_NOT_FULL(cfg->reg)) {
/* Send 0 in the case of read only operation */
txrx = 0;
if (ctx->tx_buf) {
txrx = *(((uint8_t *)ctx->tx_buf) + data->tx_count);
}
SSP_WRITE_REG(SSP_DR(cfg->reg), txrx);
data->tx_count++;
} else {
break;
}
}
}
static void spi_pl022_start_async_xfer(const struct device *dev)
{
const struct spi_pl022_cfg *cfg = dev->config;
struct spi_pl022_data *data = dev->data;
/* Ensure writable */
while (!SSP_TX_FIFO_EMPTY(cfg->reg))
;
/* Drain RX FIFO */
while (SSP_RX_FIFO_NOT_EMPTY(cfg->reg))
SSP_READ_REG(SSP_DR(cfg->reg));
data->tx_count = 0;
data->rx_count = 0;
SSP_WRITE_REG(SSP_ICR(cfg->reg), SSP_ICR_MASK_RORIC | SSP_ICR_MASK_RTIC);
spi_pl022_async_xfer(dev);
}
static void spi_pl022_isr(const struct device *dev)
{
const struct spi_pl022_cfg *cfg = dev->config;
struct spi_pl022_data *data = dev->data;
struct spi_context *ctx = &data->ctx;
uint32_t mis = SSP_READ_REG(SSP_MIS(cfg->reg));
if (mis & SSP_MIS_MASK_RORMIS) {
SSP_WRITE_REG(SSP_IMSC(cfg->reg), 0);
spi_context_complete(ctx, dev, -EIO);
} else {
spi_pl022_async_xfer(dev);
}
SSP_WRITE_REG(SSP_ICR(cfg->reg), SSP_ICR_MASK_RORIC | SSP_ICR_MASK_RTIC);
}
#else
static void spi_pl022_xfer(const struct device *dev)
{
const struct spi_pl022_cfg *cfg = dev->config;
struct spi_pl022_data *data = dev->data;
const size_t chunk_len = spi_context_max_continuous_chunk(&data->ctx);
const void *txbuf = data->ctx.tx_buf;
void *rxbuf = data->ctx.rx_buf;
uint32_t txrx;
size_t fifo_cnt = 0;
data->tx_count = 0;
data->rx_count = 0;
/* Ensure writable */
while (!SSP_TX_FIFO_EMPTY(cfg->reg))
;
/* Drain RX FIFO */
while (SSP_RX_FIFO_NOT_EMPTY(cfg->reg))
SSP_READ_REG(SSP_DR(cfg->reg));
while (data->rx_count < chunk_len || data->tx_count < chunk_len) {
/* Fill up fifo with available TX data */
while (SSP_TX_FIFO_NOT_FULL(cfg->reg) && data->tx_count < chunk_len &&
fifo_cnt < SSP_FIFO_DEPTH) {
/* Send 0 in the case of read only operation */
txrx = 0;
if (txbuf) {
txrx = ((uint8_t *)txbuf)[data->tx_count];
}
SSP_WRITE_REG(SSP_DR(cfg->reg), txrx);
data->tx_count++;
fifo_cnt++;
}
while (data->rx_count < chunk_len && fifo_cnt > 0) {
if (!SSP_RX_FIFO_NOT_EMPTY(cfg->reg))
continue;
txrx = SSP_READ_REG(SSP_DR(cfg->reg));
/* Discard received data if rx buffer not assigned */
if (rxbuf) {
((uint8_t *)rxbuf)[data->rx_count] = (uint8_t)txrx;
}
data->rx_count++;
fifo_cnt--;
}
}
}
#endif
static int spi_pl022_transceive_impl(const struct device *dev,
const struct spi_config *config,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs,
spi_callback_t cb,
void *userdata)
{
const struct spi_pl022_cfg *cfg = dev->config;
struct spi_pl022_data *data = dev->data;
struct spi_context *ctx = &data->ctx;
int ret;
spi_context_lock(&data->ctx, (cb ? true : false), cb, userdata, config);
ret = spi_pl022_configure(dev, config);
if (ret < 0) {
goto error;
}
spi_context_buffers_setup(ctx, tx_bufs, rx_bufs, 1);
spi_context_cs_control(ctx, true);
if (cfg->dma_enabled) {
#if defined(CONFIG_SPI_PL022_DMA)
for (size_t i = 0; i < ARRAY_SIZE(data->dma); i++) {
struct dma_status stat = {.busy = true};
dma_stop(cfg->dma[i].dev, cfg->dma[i].channel);
while (stat.busy) {
dma_get_status(cfg->dma[i].dev,
cfg->dma[i].channel, &stat);
}
data->dma[i].count = 0;
}
ret = spi_pl022_start_dma_transceive(dev);
if (ret < 0) {
spi_context_cs_control(ctx, false);
goto error;
}
ret = spi_context_wait_for_completion(ctx);
#endif
} else
#if defined(CONFIG_SPI_PL022_INTERRUPT)
{
spi_pl022_start_async_xfer(dev);
ret = spi_context_wait_for_completion(ctx);
}
#else
{
do {
spi_pl022_xfer(dev);
spi_context_update_tx(ctx, 1, data->tx_count);
spi_context_update_rx(ctx, 1, data->rx_count);
} while (spi_pl022_transfer_ongoing(data));
#if defined(CONFIG_SPI_ASYNC)
spi_context_complete(&data->ctx, dev, ret);
#endif
}
#endif
spi_context_cs_control(ctx, false);
error:
spi_context_release(&data->ctx, ret);
return ret;
}
/* API Functions */
static int spi_pl022_transceive(const struct device *dev,
const struct spi_config *config,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs)
{
return spi_pl022_transceive_impl(dev, config, tx_bufs, rx_bufs, NULL, NULL);
}
#if defined(CONFIG_SPI_ASYNC)
static int spi_pl022_transceive_async(const struct device *dev,
const struct spi_config *config,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs,
spi_callback_t cb,
void *userdata)
{
return spi_pl022_transceive_impl(dev, config, tx_bufs, rx_bufs, cb, userdata);
}
#endif
static int spi_pl022_release(const struct device *dev,
const struct spi_config *config)
{
struct spi_pl022_data *data = dev->data;
spi_context_unlock_unconditionally(&data->ctx);
return 0;
}
static struct spi_driver_api spi_pl022_api = {
.transceive = spi_pl022_transceive,
#if defined(CONFIG_SPI_ASYNC)
.transceive_async = spi_pl022_transceive_async,
#endif
.release = spi_pl022_release
};
static int spi_pl022_init(const struct device *dev)
{
/* Initialize with lowest frequency */
const struct spi_config spicfg = {
.frequency = 0,
.operation = SPI_WORD_SET(8),
.slave = 0,
};
const struct spi_pl022_cfg *cfg = dev->config;
struct spi_pl022_data *data = dev->data;
int ret;
#if defined(CONFIG_PINCTRL)
ret = pinctrl_apply_state(cfg->pincfg, PINCTRL_STATE_DEFAULT);
if (ret) {
LOG_ERR("Failed to apply pinctrl state");
return ret;
}
#endif
if (cfg->dma_enabled) {
#if defined(CONFIG_SPI_PL022_DMA)
for (size_t i = 0; i < spi_pl022_dma_enabled_num(dev); i++) {
uint32_t ch_filter = BIT(cfg->dma[i].channel);
if (!device_is_ready(cfg->dma[i].dev)) {
LOG_ERR("DMA %s not ready", cfg->dma[i].dev->name);
return -ENODEV;
}
ret = dma_request_channel(cfg->dma[i].dev, &ch_filter);
if (ret < 0) {
LOG_ERR("dma_request_channel failed %d", ret);
return ret;
}
}
#endif
} else {
#if defined(CONFIG_SPI_PL022_INTERRUPT)
cfg->irq_config(dev);
#endif
}
ret = spi_pl022_configure(dev, &spicfg);
if (ret < 0) {
LOG_ERR("Failed to configure spi");
return ret;
}
ret = spi_context_cs_configure_all(&data->ctx);
if (ret < 0) {
LOG_ERR("Failed to spi_context configure");
return ret;
}
/* Make sure the context is unlocked */
spi_context_unlock_unconditionally(&data->ctx);
return 0;
}
#define DMA_INITIALIZER(idx, dir) \
{ \
.dev = DEVICE_DT_GET(DT_INST_DMAS_CTLR_BY_NAME(idx, dir)), \
.channel = DT_INST_DMAS_CELL_BY_NAME(idx, dir, channel), \
.slot = DT_INST_DMAS_CELL_BY_NAME(idx, dir, slot), \
.channel_config = DT_INST_DMAS_CELL_BY_NAME(idx, dir, channel_config), \
}
#define DMAS_DECL(idx) \
{ \
COND_CODE_1(DT_INST_DMAS_HAS_NAME(idx, tx), (DMA_INITIALIZER(idx, tx)), ({0})), \
COND_CODE_1(DT_INST_DMAS_HAS_NAME(idx, rx), (DMA_INITIALIZER(idx, rx)), ({0})), \
}
#define DMAS_ENABLED(idx) (DT_INST_DMAS_HAS_NAME(idx, tx) && DT_INST_DMAS_HAS_NAME(idx, rx))
#define SPI_PL022_INIT(idx) \
IF_ENABLED(CONFIG_PINCTRL, (PINCTRL_DT_INST_DEFINE(idx);)) \
IF_ENABLED(CONFIG_SPI_PL022_INTERRUPT, \
(static void spi_pl022_irq_config_##idx(const struct device *dev) \
{ \
IRQ_CONNECT(DT_INST_IRQN(idx), DT_INST_IRQ(idx, priority), \
spi_pl022_isr, DEVICE_DT_INST_GET(idx), 0); \
irq_enable(DT_INST_IRQN(idx)); \
})) \
static struct spi_pl022_data spi_pl022_data_##idx = { \
SPI_CONTEXT_INIT_LOCK(spi_pl022_data_##idx, ctx), \
SPI_CONTEXT_INIT_SYNC(spi_pl022_data_##idx, ctx), \
SPI_CONTEXT_CS_GPIOS_INITIALIZE(DT_DRV_INST(idx), ctx)}; \
static struct spi_pl022_cfg spi_pl022_cfg_##idx = { \
.reg = DT_INST_REG_ADDR(idx), \
.pclk = DT_INST_PROP_BY_PHANDLE(idx, clocks, clock_frequency), \
IF_ENABLED(CONFIG_PINCTRL, (.pincfg = PINCTRL_DT_INST_DEV_CONFIG_GET(idx),)) \
IF_ENABLED(CONFIG_SPI_PL022_DMA, (.dma = DMAS_DECL(idx),)) COND_CODE_1( \
CONFIG_SPI_PL022_DMA, (.dma_enabled = DMAS_ENABLED(idx),), \
(.dma_enabled = false,)) \
IF_ENABLED(CONFIG_SPI_PL022_INTERRUPT, \
(.irq_config = spi_pl022_irq_config_##idx,))}; \
DEVICE_DT_INST_DEFINE(idx, spi_pl022_init, NULL, &spi_pl022_data_##idx, \
&spi_pl022_cfg_##idx, POST_KERNEL, CONFIG_SPI_INIT_PRIORITY, \
&spi_pl022_api);
DT_INST_FOREACH_STATUS_OKAY(SPI_PL022_INIT)