forked from zhan-xu/RigNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
gen_dataset.py
169 lines (149 loc) · 8.24 KB
/
gen_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
#-------------------------------------------------------------------------------
# Name: gen_dataset.py
# Purpose: Script to generate data for skeleton and connectivity predition stage
# Change dataset_folder to the folder where you put the downloaded pre-processed data
# RigNet Copyright 2020 University of Massachusetts
# RigNet is made available under General Public License Version 3 (GPLv3), or under a Commercial License.
# Please see the LICENSE README.txt file in the main directory for more information and instruction on using and licensing RigNet.
#-------------------------------------------------------------------------------
import os
import shutil
import numpy as np
import open3d as o3d
from multiprocessing import Pool
from utils.io_utils import mkdir_p
from utils.rig_parser import Info
from geometric_proc.common_ops import calc_surface_geodesic, get_bones
def get_tpl_edges(remesh_obj_v, remesh_obj_f):
edge_index = []
for v in range(len(remesh_obj_v)):
face_ids = np.argwhere(remesh_obj_f == v)[:, 0]
neighbor_ids = []
for face_id in face_ids:
for v_id in range(3):
if remesh_obj_f[face_id, v_id] != v:
neighbor_ids.append(remesh_obj_f[face_id, v_id])
neighbor_ids = list(set(neighbor_ids))
neighbor_ids = [np.array([v, n])[np.newaxis, :] for n in neighbor_ids]
if len(neighbor_ids) == 0:
continue
neighbor_ids = np.concatenate(neighbor_ids, axis=0)
edge_index.append(neighbor_ids)
edge_index = np.concatenate(edge_index, axis=0)
return edge_index
def get_geo_edges(surface_geodesic, remesh_obj_v):
edge_index = []
surface_geodesic += 1.0 * np.eye(len(surface_geodesic)) # remove self-loop edge here
for i in range(len(remesh_obj_v)):
geodesic_ball_samples = np.argwhere(surface_geodesic[i, :] <= 0.06).squeeze(1)
if len(geodesic_ball_samples) > 10:
geodesic_ball_samples = np.random.choice(geodesic_ball_samples, 10, replace=False)
edge_index.append(np.concatenate((np.repeat(i, len(geodesic_ball_samples))[:, np.newaxis],
geodesic_ball_samples[:, np.newaxis]), axis=1))
edge_index = np.concatenate(edge_index, axis=0)
return edge_index
def genDataset(process_id):
global dataset_folder
print("process ID {:d}".format(process_id))
if process_id < 6:
model_list = np.loadtxt(os.path.join(dataset_folder, 'train_final.txt'), dtype=int)
model_list = model_list[365*process_id: 365*(process_id+1)]
split_name = 'train'
elif process_id == 6:
model_list = np.loadtxt(os.path.join(dataset_folder, 'val_final.txt'), dtype=int)
split_name = 'val'
elif process_id == 7:
model_list = np.loadtxt(os.path.join(dataset_folder, 'test_final.txt'), dtype=int)
split_name = 'test'
mkdir_p(os.path.join(dataset_folder, split_name))
for model_id in model_list:
remeshed_obj_filename = os.path.join(dataset_folder, 'obj_remesh/{:d}.obj'.format(model_id))
info_filename = os.path.join(dataset_folder, 'rig_info_remesh/{:d}.txt'.format(model_id))
remeshed_obj = o3d.io.read_triangle_mesh(remeshed_obj_filename)
remesh_obj_v = np.asarray(remeshed_obj.vertices)
if not remeshed_obj.has_vertex_normals():
remeshed_obj.compute_vertex_normals()
remesh_obj_vn = np.asarray(remeshed_obj.vertex_normals)
remesh_obj_f = np.asarray(remeshed_obj.triangles)
rig_info = Info(info_filename)
#vertices
vert_filename = os.path.join(dataset_folder, '{:s}/{:d}_v.txt'.format(split_name, model_id))
input_feature = np.concatenate((remesh_obj_v, remesh_obj_vn), axis=1)
np.savetxt(vert_filename, input_feature, fmt='%.6f')
#topology edges
edge_index = get_tpl_edges(remesh_obj_v, remesh_obj_f)
graph_filename = os.path.join(dataset_folder, '{:s}/{:d}_tpl_e.txt'.format(split_name, model_id))
np.savetxt(graph_filename, edge_index, fmt='%d')
# geodesic_edges
surface_geodesic = calc_surface_geodesic(remeshed_obj)
edge_index = get_geo_edges(surface_geodesic, remesh_obj_v)
graph_filename = os.path.join(dataset_folder, '{:s}/{:d}_geo_e.txt'.format(split_name, model_id))
np.savetxt(graph_filename, edge_index, fmt='%d')
# joints
joint_pos = rig_info.get_joint_dict()
joint_name_list = list(joint_pos.keys())
joint_pos_list = list(joint_pos.values())
joint_pos_list = [np.array(i) for i in joint_pos_list]
adjacent_matrix = rig_info.adjacent_matrix()
joint_filename = os.path.join(dataset_folder, '{:s}/{:d}_j.txt'.format(split_name, model_id))
adj_filename = os.path.join(dataset_folder, '{:s}/{:d}_adj.txt'.format(split_name, model_id))
np.savetxt(adj_filename, adjacent_matrix, fmt='%d')
np.savetxt(joint_filename, np.array(joint_pos_list), fmt='%.6f')
# pre_trained attn
shutil.copyfile(os.path.join(dataset_folder, 'pretrain_attention/{:d}.txt'.format(model_id)),
os.path.join(dataset_folder, '{:s}/{:d}_attn.txt'.format(split_name, model_id)))
# voxel
shutil.copyfile(os.path.join(dataset_folder, 'vox/{:d}.binvox'.format(model_id)),
os.path.join(dataset_folder, '{:s}/{:d}.binvox'.format(split_name, model_id)))
#skinning information
num_nearest_bone = 5
geo_dist = np.load(os.path.join(dataset_folder, "volumetric_geodesic/{:d}_volumetric_geo.npy".format(model_id)))
bone_pos, bone_names, bone_isleaf = get_bones(rig_info)
input_samples = [] # mesh_vertex_id, (bone_id, 1 / D_g, is_leaf) * N
ground_truth_labels = [] # w_1, w_2, ..., w_N
for vert_remesh_id in range(len(remesh_obj_v)):
this_sample = [vert_remesh_id]
this_label = []
skin = rig_info.joint_skin[vert_remesh_id]
skin_w = {}
for i in np.arange(1, len(skin), 2):
skin_w[skin[i]] = float(skin[i + 1])
bone_id_near_to_far = np.argsort(geo_dist[vert_remesh_id, :])
for i in range(num_nearest_bone):
if i >= len(bone_id_near_to_far):
this_sample += [-1, 0, 0]
this_label.append(0.0)
continue
bone_id = bone_id_near_to_far[i]
this_sample.append(bone_id)
this_sample.append(1.0 / (geo_dist[vert_remesh_id, bone_id] + 1e-10))
this_sample.append(bone_isleaf[bone_id])
start_joint_name = bone_names[bone_id][0]
if start_joint_name in skin_w:
this_label.append(skin_w[start_joint_name])
del skin_w[start_joint_name]
else:
this_label.append(0.0)
input_samples.append(this_sample)
ground_truth_labels.append(this_label)
with open(os.path.join(dataset_folder, '{:s}/{:d}_skin.txt'.format(split_name, model_id)), 'w') as fout:
for i in range(len(bone_pos)):
fout.write('bones {:s} {:s} {:.6f} {:.6f} {:.6f} '
'{:.6f} {:.6f} {:.6f}\n'.format(bone_names[i][0], bone_names[i][1],
bone_pos[i, 0], bone_pos[i, 1], bone_pos[i, 2],
bone_pos[i, 3], bone_pos[i, 4], bone_pos[i, 5]))
for i in range(len(input_samples)):
fout.write('bind {:d} '.format(input_samples[i][0]))
for j in np.arange(1, len(input_samples[i]), 3):
fout.write('{:d} {:.6f} {:d} '.format(input_samples[i][j], input_samples[i][j + 1], input_samples[i][j + 2]))
fout.write('\n')
for i in range(len(ground_truth_labels)):
fout.write('influence ')
for j in range(len(ground_truth_labels[i])):
fout.write('{:.3f} '.format(ground_truth_labels[i][j]))
fout.write('\n')
if __name__ == '__main__':
dataset_folder = "/media/zhanxu/4T/ModelResource_RigNetv1_preproccessed/"
p = Pool(8)
p.map(genDataset, [0, 1, 2, 3, 4, 5, 6, 7])
#genDataset(0)