-
Notifications
You must be signed in to change notification settings - Fork 38
/
Copy pathimpl.cpp
345 lines (311 loc) · 10.8 KB
/
impl.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
// Copyright (c) 2013 Arista Networks, Inc. All rights reserved.
// Arista Networks, Inc. Confidential and Proprietary.
#include <algorithm>
#include <cerrno>
#include <ctime> // for time_t
#include <sys/select.h>
#include <sys/time.h> // for struct timeval
#include <cstring> // strlen
#include "impl.h"
#include "eos/panic.h"
#include "eos/sdk.h"
#include "eos/intf.h"
#include <stdint.h>
#include <iterator>
#include <map>
namespace eos {
Impl impl;
void
fd_handler_sm::update_fd_set(int & maxfd,
fd_set * readfds,
fd_set * writefds,
fd_set * exceptfds) {
for(auto i = fds_.begin(); i != fds_.end(); i++) {
int fd = i->first;
if(fd > maxfd) {
maxfd = fd;
}
uint8_t flags = i->second;
if (flags & WANT_READ) {
FD_SET(fd, readfds);
}
if (flags & WANT_WRITE) {
FD_SET(fd, writefds);
}
if (flags & WANT_EXCEPT) {
FD_SET(fd, exceptfds);
}
}
}
void
fd_handler_sm::interest_is(int fd, bool want, interest_t interest) {
if(want) {
fds_[fd] = fds_[fd] | interest;
} else {
fds_[fd] = fds_[fd] & ~interest;
if(!fds_[fd]) {
fds_.erase(fd);
}
}
}
void
timer_queue::update(timer * timer) {
if (timer->timeout() == never) {
// Remove the timer from the list. Don't use erase() because it's O(N).
auto it = std::find(c.begin(), c.end(), timer);
if (it == c.end()) {
return; // We weren't in the list, so nothing to do.
}
// Swap the one we want to remove with the last one, and pop back. O(1)
std::swap(*it, c.back());
c.pop_back();
}
// Re-sort our vector into a min-heap. O(3N) = O(N).
std::make_heap(c.begin(), c.end(), comp);
}
void Impl::timeout_is(timeout_handler * handler, seconds_t timeout) {
timer& timer = timeout_to_timer_[handler];
seconds_t previous = timer.timeout();
timer.timeout_is(timeout);
if (previous == never) { // If we weren't previously scheduled...
timers_.push(&timer); // ... then add ourself to the min-heap.
} else { // Otherwise, we were already scheduled...
timers_.update(&timer); // ... so we need to adjust our position.
}
}
static struct timeval to_timeval(seconds_t time) {
struct timeval tv;
tv.tv_sec = time_t(time);
tv.tv_usec = suseconds_t((time - tv.tv_sec) * 1000000.0 + 0.5);
return tv;
}
void Impl::agent_name_is(const char * agent_name) {
this->agent_name = agent_name;
// TODO: Set the process title or whatever else.
}
void handle_agent_initialize(agent_mgr *);
void Impl::do_initialize() {
handle_agent_initialize(sdk_->get_agent_mgr());
}
void Impl::stop_loop() {
running_ = false;
}
void Impl::main_loop(seconds_t duration) {
if(!initialized_) {
do_initialize();
return;
initialized_ = true;
}
seconds_t loop_end;
if(duration >= 0) { // If the event loop must run for a given amount of time:
loop_end = now() + duration; // Turn this amount into an absolute deadline.
} else {
loop_end = 0; // Never end.
}
running_ = true;
while(running_) {
int maxfd = 0;
fd_set readfds;
FD_ZERO(&readfds);
fd_set writefds;
FD_ZERO(&writefds);
fd_set exceptfds;
FD_ZERO(&exceptfds);
for(auto handler = fd_handlers_.begin();
handler != fd_handlers_.end(); handler++) {
handler->second.update_fd_set(maxfd, &readfds, &writefds, &exceptfds);
}
maxfd++;
seconds_t next_deadline; // Absolute point in time of our next deadline.
seconds_t timeout_seconds; // How long we're gonna sleep to get there.
timer * next_timer = 0;
if(timers_.empty()) {
next_deadline = never;
timeout_seconds = 0;
} else {
next_timer = timers_.top();
timers_.pop();
next_deadline = next_timer->timeout();
timeout_seconds = next_deadline - now();
}
// If this loop must eventually stop, check whether we need to stop
// before the next timer fires.
if(loop_end) {
if(next_deadline == never) {
// We don't have any outstanding timer, so just stop at the point
// we were asked to terminate this loop.
next_deadline = loop_end;
} else {
// If the point at which we need to stop the loop is before our
// next timer then we must stop at that point instead of the timer.
next_deadline = next_deadline < loop_end ? next_deadline : loop_end;
}
timeout_seconds = next_deadline - now();
if (timeout_seconds < 0) { // Can't have a negative timeout.
timeout_seconds = 0; // Tells select() to return immediately.
}
}
// Consider switching to epoll, but this doesn't matter for now.
struct timeval timeout = to_timeval(timeout_seconds);
int rv = select(maxfd, &readfds, &writefds, &exceptfds,
next_deadline == never ? 0 : &timeout);
if(rv < 0) { // select() failed?
switch(errno) {
case EINTR:
break; // Go straight to the point where we process timers.
case EBADF:
panic("TODO: handle this case");
case EINVAL:
panic("Programming bug, should never happen");
case ENOMEM:
panic("System out of memory");
}
panic("Unhandled errno on select() failure: %d", errno);
} else { // select() succeeded.
// Process notifications: for each handler, check each FD it's
// interested in, and if the FD was select()ed, notify it.
for(auto handler_iter = fd_handlers_.begin();
handler_iter != fd_handlers_.end(); handler_iter++) {
auto handler = handler_iter->first;
auto sm = handler_iter->second;
for(auto fd_iter = sm.fd_set_begin();
fd_iter != sm.fd_set_end(); fd_iter++) {
int fd = fd_iter->first;
if(FD_ISSET(fd, &readfds) && sm.want_readable(fd)) {
handler->on_readable(fd);
}
if(FD_ISSET(fd, &writefds) && sm.want_writable(fd)) {
handler->on_writable(fd);
}
if(FD_ISSET(fd, &exceptfds) && sm.want_exception(fd)) {
handler->on_exception(fd);
}
}
}
}
// Process timers.
if(next_timer) { // Do we have at least one outstanding timer?
if(now() >= next_deadline) { // Our first timer has passed.
next_timer->handler()->on_timeout();
// We may have other timers that have passed too.
while(!timers_.empty()) {
next_timer = timers_.top(); // Grab the next timer.
if(next_timer->timeout() > now()) { // Should it have fired already?
break; // No: stop here.
} // Yes: trigger the callback, and continue.
timers_.pop();
next_timer->handler()->on_timeout();
}
} else { // Our first timer needs to be rescheduled.
timers_.push(next_timer);
}
}
if(loop_end && loop_end <= now()) {
break;
}
}
}
// convert mac address string to byte array
void eth_addr_t_to_bytes(char const* str, uint8_t* bytes) {
int i = 0; // index in str
int len = strlen(str);
bool firstNibble = true; // 2 nibbles for a byte
int nibble;
int byte;
for (int j=0; j<len; j++) {
if (str[j] == ':' || str[j] == '.') {
continue;
}
if (str[j] >= '0' && str[j] <= '9') {
nibble = str[j] - '0';
} else if (str[j] >= 'a' && str[j] <= 'f') {
nibble = str[j] - 'a' + 10;
} else if (str[j] >= 'A' && str[j] <= 'F') {
nibble = str[j] - 'A' + 10;
} else {
panic(invalid_argument_error("Not a MAC address"));
break;
}
if (firstNibble) {
byte = nibble;
firstNibble = false;
} else {
byte = byte*16 + nibble;
if (i >=6 ) {
panic(invalid_argument_error("Not a MAC address"));
}
bytes[i] = byte;
i++;
firstNibble = true;
}
}
if (!firstNibble || i != 6) {
panic(invalid_argument_error("Not a MAC address"));
}
}
// Minimal implementation of intf_id_t. We use a global counter for the ID and we
// will not bother if that counter wraps. We store interface-name to interface-id
// mapping and vice-versa in 2 maps.
// The ID is a unit64_t stored in the class's private intfId_.
uint64_t intfId_counter = 0;
std::map<std::string, uint64_t> intfId_from_string;
std::map<uint64_t, std::string> intfString_from_id;
uint64_t intf_id_t_ctor(char const * name);
bool intf_id_t_is_null0(uint64_t intfId_) ;
bool intf_id_t_is_subintf(uint64_t intfId_) ;
intf_type_t intf_id_t_intf_type(uint64_t intfId_) ;
std::string intf_id_t_to_string(uint64_t intfId_) ;
static intf_type_t intf_name_to_type( std::string const & name) {
if (name.find("Ethernet") == 0) return INTF_TYPE_ETH;
if (name.find("Vlan") == 0) return INTF_TYPE_VLAN;
if (name.find("Management") == 0) return INTF_TYPE_MANAGEMENT;
if (name.find("Loopback") == 0) return INTF_TYPE_LOOPBACK;
if (name.find("Port-Channel") == 0) return INTF_TYPE_LAG;
if (name.find("Vxlan") == 0) return INTF_TYPE_VXLAN;
if (name.find("Cpu") == 0) return INTF_TYPE_CPU;
if (name.find("Null0") == 0) return INTF_TYPE_NULL0;
return INTF_TYPE_OTHER;
}
// Construction (from string)
// We are not validating much, but some panics can be generated.
uint64_t intf_id_t_ctor(char const * name) {
if (intf_name_to_type(name) == INTF_TYPE_OTHER) {
panic(no_such_interface_error(name));
}
try {
return intfId_from_string.at( name ); // already exists
} catch ( std::out_of_range & e ) {
intfId_counter++;
intfId_from_string[ name ] = intfId_counter;
intfString_from_id[ intfId_counter ] = name;
}
return intfId_counter;
}
bool
intf_id_t_is_null0(uint64_t intfId_) {
if (intfId_ == 0) return false;
auto name = intfString_from_id.at( intfId_ );
return !strcmp(name.c_str(), "Null0");
}
bool
intf_id_t_is_subintf(uint64_t intfId_) {
if (intfId_ == 0) return false;
auto name = intfString_from_id.at( intfId_ );
size_t pos = name.find( "." );
if (pos == std::string::npos) {
return false;
}
return true;
}
intf_type_t
intf_id_t_intf_type(uint64_t intfId_) {
if (intfId_ == 0) return INTF_TYPE_NULL;
auto name = intfString_from_id.at( intfId_ );
return intf_name_to_type(name);
}
std::string
intf_id_t_to_string(uint64_t intfId_) {
if (intfId_ == 0) return "(None)";
return intfString_from_id[ intfId_ ];
}
}