Skip to content

Latest commit

 

History

History
69 lines (50 loc) · 2.41 KB

README.md

File metadata and controls

69 lines (50 loc) · 2.41 KB

Gemini Icon Gemini-API

Reverse-engineered asynchronous python wrapper for Google Gemini (formerly Bard) web client, providing a simple and elegant interface inspired by Google GenerativeAI's official API.

Installation

pip install gemini-webapi

Authentication

  • Go to https://gemini.google.com/ and login with your Google account
  • Press F12 for web inspector, go to Network tab and refresh the page
  • Click any request and copy cookie values of __Secure-1PSID and __Secure-1PSIDTS

Usage

Initialization

from gemini import GeminiClient

# Replace "COOKIE VALUE HERE" with your actual cookie values as strings
Secure_1PSID = "COOKIE VALUE HERE"
Secure_1PSIDTS = "COOKIE VALUE HERE"

client = GeminiClient(Secure_1PSID, Secure_1PSIDTS, proxy=None)
await client.init()

Generate contents from text inputs

response = await client.generate_content("Hello World!")
print(response.text)  # Note: simply use print(response) to get the same output if you just want to see the response text

Retrieve images in response

response = await client.generate_content("Send me some pictures of cats")
images = response.images
for image in images:
    print(f"{image.title}({image.url}) - {image.alt}", sep="\n")

Conversations across multiple turns

chat = client.start_chat()  # A chat stores the metadata to keep a conversation continuous. It will automatically get updated after each turn
response1 = await chat.send_message("Briefly introduce Europe")
response2 = await chat.send_message("What's the population there?")
print(response1.text, response2.text, sep="\n----------------------------------\n")

Check and switch to other answer candidates

chat = client.start_chat()
response = await chat.send_message("What's the best Japanese dish in your mind? Choose one only.")
for candidate in response.candidates:
    print(candidate, "\n----------------------------------\n")

# Control the ongoing conversation flow by choosing candidate manually
new_candidate = chat.choose_candidate(index=1) # Choose the second candidate here
followup_response = await chat.send_message("Tell me more about it.")  # Will generate contents based on the chosen candidate
print(new_candidate, followup_response, sep="\n----------------------------------\n")