
ece467 - final project 1

Final Project: Character-Level Language Modeling for Text Generation via Deep
Markov Models
Armaan Kohli - ece467 Natural Language Processing
Spring 2020

Remarks

We attempted to use a deep markov model (DMM) to make a character-level language model. This work is
based on recent developments in the understanding of discrete time series, such as MIDI, as well as natural
language processing. Using a DMM, we were able to generate text that yielded quantitative performance
approaching state of the art for character-based language models. However, training remains unstable and
more research into DMMs is likely required for their performance for language models to improve.

Deep Markov Models

Traditional markov models are a method representing complex temporal dependencies in observed data. A
markov model has a chain of latent variables, with each latent (or hidden) variable in the chain is conditioned
on the previous latent variable. This is a useful approach, but if we want to represent complex data with
complex dynamics, such as text, we would like to be able to model dynamics that are potentially highly
non-linear.

Figure 1: An illustration of a DMM. Each
of the black squares represent an RNNs
that determine the probability of emis-
sion or transmission. Image replicated
from Pyro documentation [?]

This brings forth the idea of a deep markov model, wherein we
allow the transition probabilities governing the dynamics of the latent
variables as well as the the emission probabilities that govern how the
observations are generated by the latent dynamics to be parametrized
by (non-linear) neural networks. DMMs were first used in the setting of
polyphonic music generation. Using a MIDI representation of musical
notes, Krishnan et. al were able to generate high-quality songs and
learn a representaton of electronic health record data [?].

Even though this method was originally designed for music genera-
tion, character-level language models can be thought of in a similar
way. At each time step, music can be represented by an 88-dimensional binary vector. Similarly, characters in
a phrase can be represented by a one-hot vector with a dimension given by the size of the learned dictionary.
Research by the Harvard Intellegnt Probabalistic Systems (HIPS) group takes a similar approach, using the
a neural network for both polyphonic music generation and character-level language modeling, the only
change being the distribution from which the data is drawn from, the obervation liklihod (Bernoulli vs
categorical) [?]. HIPS uses a generative flow model for character-level language modelling as opposed to a
DMM, however. The inference strategy we’re going to use called variational inference (VI), which requires
specifying a parametrized family of distributions that can be used to approximate the posterior distribution
over the latent random variables. Due to the complex temporal relations we seek to model, we can expect the
posterior distribution to be highly non-trivial, necessitating a probabilistic approach. Thus, we use PyTorch as

ece467 - final project 2

our choice of deep learning framework, as well as Pyro, a probabilistic programming language integrated
into PyTorch to effectively sample and perform VI on our model.

Implementation Details

We use a single-layer RNN for our emission and transmission probabilities. Our objective function is the
ELBO (evidence-based lower bound) with a KL-annealing term β, inspired by [?].

F (θ, φ, β; x, z) ≥ L(θ, φ; x, z) = Eqφ(z|x)[logpθ
(x|z)]− βDKL(qφ(z|x)||p(z)) (1)

We use Monte Carlo estimates of the KL divergence term.

We train the language model using the Penn Treebank (PTB) corpus. We perform treat every line in the
corpus as a distinct sequence, or sentence, and tokenize each character in each sentence, adding the <unk>

token for low-frequency or unknown words, and <eos> to demarcate the end of a sentence. The size of the
dictionary was 52. In order to generate a character embedding, we simply encoded our character dictionary
as a one-hot 52-dimensional vector. This was an appropriate choice due to the small dictionary size. We
opt for a batch size of 16. For full details see github.com/armaank/textDMM for the full codebase and the
parameters used to train the network.

We found that using the entirety of the PTB dataset to be challenging for our language model. The longer
the sentence used in the character level language model, the more difficult the model was to optimize. We
found that limiting ourselves to sentences shorter than 50 characters significantly improved results. However,
this would mean that the semantic quality of generated sentences would be reduced as the length of the
sentence increases.

Results & Discussion

Figure illustrates the negative log likelihood learning curve, showing that the model converges.

0 25 50 75 100 125 150 175 200
Epoch

0

10

20

30

40

50

60

70

Lo
ss

Training NLL

In order to see if our implementation is reasonable we compared our results to the numbers reported in [?]
in Table 1

https://github.com/armaank/textDMM

ece467 - final project 3

NLL Validation/Test Loss
LSTM 1.38

AWD-LSTM 1.18

IAF 1.42

DMM 6.82

Table 1: This table compares the vari-
ous results of state of the art character
level language models. The results for
the LSTM, AWD-LSTM and IAF come
from [?]

The LSTM, AWD-LSTM and IAF are state of the art language models. These langauge models were able to
train for much longer durations and were able to use a larger portion of the PTB dataset because they could
use long sentences. Our results are fairly close to the others in terms of NLL loss, which appears to be the
standard performance metric in character-level language modelling tasks.

Performance of the DMM might be improve by using a different method for KL annealing, which can
improve stability during training. Furthermore, we use a Monte Carlo estimate of the KL divergence, leading
to higher variance gradient estimates of the ELBO loss, which can also destabilize performance during early
training periods. We might also trying using an LSTM architecture to parametrize our transmission and
emission probabilities over the so-called ‘vanilla’ RNN. On a related note, one possibility is that exploding
gradients are caused by lengthy input sequences, so the way we resolved this was to train on shorter text
sequences, which it a bit of a hacky solution.

Conclusion

In conclusion, we were able to successfully train a DMM as a character-level language model and achieve
strong performance. However, though more research is needed to improve DMMs for NLP tasks.

ece467 - final project 4

Appendix A: Code

The code below is dmm.py, the main model code.

1 """dmm

2 """

3 import argparse

4 import os

5

6 import numpy as np

7 import torch

8 import torchtext

9 import pyro

10

11 import torch.nn as nn

12 import pyro.distributions as dist

13 import pyro.poutine as poutine

14

15 from torch.autograd import Variable

16 from pyro.distributions import TransformedDistribution

17

18 import utils

19

20

21 class Emitter(nn.Module):

22 """

23 parameterizes the categorical observation likelihood p(x_t|z_t)

24 """

25

26 def __init__(self, input_dim, z_dim, emission_dim):

27 super().__init__()

28 """

29 initilize the fcns used in the network

30 """

31 self.lin_z_to_hidden = nn.Linear(z_dim, emission_dim)

32 self.lin_hidden_to_hidden = nn.Linear(emission_dim, emission_dim)

33 self.lin_hidden_to_input = nn.Linear(emission_dim, input_dim)

34 self.relu = nn.ReLU()

35

36 pass

37

38 def forward(self, z_t):

39 """

40 given z_t, compute the probabilities that parameterizes the categorical distribution p(x_t|z_t)

41 """

42 h1 = self.relu(self.lin_z_to_hidden(z_t))

43 h2 = self.relu(self.lin_hidden_to_hidden(h1))

44 probs = torch.sigmoid(

45 self.lin_hidden_to_input(h2)

46) # might need to change to argmax, max?, softmax?

47

ece467 - final project 5

48 return probs

49

50

51 class GatedTransition(nn.Module):

52 """

53 parameterizes the gaussian latent transition probability p(z_t | z_{t-1})

54 """

55

56 def __init__(self, z_dim, transition_dim):

57 super().__init__()

58 """

59 initilize the fcns used in the network

60 """

61 self.lin_gate_z_to_hidden = nn.Linear(z_dim, transition_dim)

62 self.lin_gate_hidden_to_z = nn.Linear(transition_dim, z_dim)

63 self.lin_proposed_mean_z_to_hidden = nn.Linear(z_dim, transition_dim)

64 self.lin_proposed_mean_hidden_to_z = nn.Linear(transition_dim, z_dim)

65 self.lin_sig = nn.Linear(z_dim, z_dim)

66 self.lin_z_to_loc = nn.Linear(z_dim, z_dim)

67

68 self.lin_z_to_loc.weight.data = torch.eye(z_dim)

69 self.lin_z_to_loc.bias.data = torch.zeros(z_dim)

70

71 self.relu = nn.ReLU()

72 self.softplus = nn.Softplus()

73

74 pass

75

76 def forward(self, z_t_1):

77 """

78 Given the latent z_{t-1} we return the mean and scale vectors that parameterize the

79 (diagonal) gaussian distribution p(z_t | z_{t-1})‘

80 """

81 # compute the gating function

82
_gate = self.relu(self.lin_gate_z_to_hidden(z_t_1))

83 gate = torch.sigmoid(self.lin_gate_hidden_to_z(_gate))

84 # compute the ’proposed mean’

85
_proposed_mean = self.relu(self.lin_proposed_mean_z_to_hidden(z_t_1))

86 proposed_mean = self.lin_proposed_mean_hidden_to_z(_proposed_mean)

87 # assemble the actual mean used to sample z_t, which mixes a linear transformation

88 # of z_{t-1} with the proposed mean modulated by the gating function

89 loc = (1 - gate) * self.lin_z_to_loc(z_t_1) + gate * proposed_mean

90 # compute the scale used to sample z_t, using the proposed mean from

91 # above as input the softplus ensures that scale is positive

92 scale = self.softplus(self.lin_sig(self.relu(proposed_mean)))

93 # return loc, scale which can be fed into Normal

94 return loc, scale

95

96

97 class Combiner(nn.Module):

98 """

ece467 - final project 6

99 parameterizes q(z_t | z_{t-1}, x_{t:T}), which is the basic building block

100 of the guide (i.e. the variational distribution). The dependence on x_{t:T} is

101 through the hidden state of the RNN

102 """

103

104 def __init__(self, z_dim, rnn_dim):

105 super().__init__()

106 """

107 initilize the fcns used in the network

108 """

109 self.lin_z_to_hidden = nn.Linear(z_dim, rnn_dim)

110 self.lin_hidden_to_loc = nn.Linear(rnn_dim, z_dim)

111 self.lin_hidden_to_scale = nn.Linear(rnn_dim, z_dim)

112 self.tanh = nn.Tanh()

113 self.softplus = nn.Softplus()

114

115 pass

116

117 def forward(self, z_t_1, h_rnn):

118 """

119 Given the latent z_{t-1} at at a particular time as well as the hidden

120 state of the RNN h(x_{t:T}) we return the mean and scale vectors that

121 parameterize the (diagonal) gaussian distribution q(z_t | z_{t-1}, x_{t:T})

122 """

123 # combine the rnn hidden state with a transformed version of z_t_1

124 h_combined = 0.5 * (self.tanh(self.lin_z_to_hidden(z_t_1)) + h_rnn)

125 # use the combined hidden state to compute the mean used to sample z_t

126 loc = self.lin_hidden_to_loc(h_combined)

127 # use the combined hidden state to compute the scale used to sample z_t

128 scale = self.softplus(self.lin_hidden_to_scale(h_combined))

129 # return loc, scale which can be fed into Normal

130 return loc, scale

131

132

133 class DMM(nn.Module):

134 """

135 module for the model and the guide (variational distribution) for the DMM

136 """

137

138 def __init__(

139 self,

140 input_dim=52,

141 z_dim=100,

142 emission_dim=100,

143 transition_dim=200,

144 rnn_dim=600,

145 num_layers=1,

146 dropout=0.0,

147):

148 super().__init__()

149 """

ece467 - final project 7

150 instantiate modules used in the model and guide

151 """

152 self.emitter = Emitter(input_dim, z_dim, emission_dim)

153 self.transition = GatedTransition(z_dim, transition_dim)

154 self.combiner = Combiner(z_dim, rnn_dim)

155

156 if num_layers == 1:

157 rnn_dropout = 0.0

158 else:

159 rnn_dropout = dropout

160

161 self.rnn = nn.RNN(

162 input_size=input_dim,

163 hidden_size=rnn_dim,

164 nonlinearity="relu",

165 batch_first=True,

166 bidirectional=False,

167 num_layers=num_layers,

168 dropout=rnn_dropout,

169)

170 """

171 define learned parameters that define the probability distributions P(z_1) and q(z_1) and hidden

state of rnn

172 """

173 self.z_0 = nn.Parameter(torch.zeros(z_dim))

174 self.z_q_0 = nn.Parameter(torch.zeros(z_dim))

175 self.h_0 = nn.Parameter(torch.zeros(1, 1, rnn_dim))

176

177 self.cuda()

178

179 pass

180

181 def model(self, batch, reversed_batch, batch_mask, batch_seqlens, kl_anneal=1.0):

182 """

183 the model defines p(x_{1:T}|z_{1:T}) and p(z_{1:T})

184 """

185 # maximum duration of batch

186 Tmax = batch.size(1)

187

188 # register torch submodules w/ pyro

189 pyro.module("dmm", self)

190

191 # setup recursive conditioning for p(z_t|z_{t-1})

192 z_prev = self.z_0.expand(batch.size(0), self.z_0.size(0))

193

194 # sample conditionally indepdent text across the batch

195 with pyro.plate("z_batch", len(batch)):

196 # sample latent vars z and observed x w/ multiple samples from the guide for each z

197 for t in pyro.markov(range(1, Tmax + 1)):

198

199 # compute params of diagonal gaussian p(z_t|z_{t-1})

ece467 - final project 8

200 z_loc, z_scale = self.transition(z_prev)

201

202 # sample latent variable

203 with poutine.scale(scale=kl_anneal):

204 z_t = pyro.sample(

205 "z_%d" % t,

206 dist.Normal(z_loc, z_scale)

207 .mask(batch_mask[:, t - 1 : t])

208 .to_event(1),

209)

210

211 # compute emission probability from latent variable

212 emission_prob = self.emitter(z_t)

213

214 # observe x_t according to the Categorical distribution defined by the emitter

probability

215 pyro.sample(

216 "obs_x_%d" % t,

217 dist.OneHotCategorical(emission_prob)

218 .mask(batch_mask[:, t - 1 : t])

219 .to_event(1),

220 obs=batch[:, t - 1, :],

221)

222

223 # set conditional var for next time step

224 z_prev = z_t

225 pass

226

227 def guide(self, batch, reversed_batch, batch_mask, batch_seqlens, kl_anneal=1.0):

228 """

229 the guide defines the variational distribution q(z_{1:T}|x_x{1:T})

230 """

231 # maximum duration of batch

232 Tmax = batch.size(1)

233

234 # register torch submodules w/ pyro

235 pyro.module("dmm", self)

236

237 # to parallelize, we broadcast rnn into continguous gpu memory

238 h_0_contig = self.h_0.expand(

239 1, batch.size(0), self.rnn.hidden_size

240).contiguous()

241

242 # push observed sequence through rnn

243 rnn_output, _ = self.rnn(reversed_batch, h_0_contig)

244

245 # reverse and unpack rnn output

246 rnn_output = utils.pad_and_reverse(rnn_output, batch_seqlens)

247

248 # setup recursive conditioning

249 z_prev = self.z_q_0.expand(batch.size(0), self.z_q_0.size(0))

ece467 - final project 9

250

251 with pyro.plate("z_batch", len(batch)):

252

253 for t in pyro.markov(range(1, Tmax + 1)):

254

255 z_loc, z_scale = self.combiner(z_prev, rnn_output[:, t - 1, :])

256

257 z_dist = dist.Normal(z_loc, z_scale)

258 assert z_dist.event_shape == ()

259 assert z_dist.batch_shape[-2:] == (len(batch), self.z_q_0.size(0))

260

261 # sample z_t from distribution z_dist

262 with pyro.poutine.scale(scale=kl_anneal):

263 z_t = pyro.sample(

264 "z_%d" % t, z_dist.mask(batch_mask[:, t - 1 : t]).to_event(1)

265)

266

267 # set conditional var for next time step

268 z_prev = z_t

269

270 pass

ece467 - final project 10

The code below is train.py, the main code used to perform training and evaluation.

1 """train

2 """

3 import os

4 import random

5 import time

6

7 import numpy as np

8 import pyro

9 import torch

10

11 import torchtext

12

13 from torch import nn

14

15 from pyro.infer import SVI, Trace_ELBO

16 from pyro.optim import ClippedAdam

17 from torch.autograd import Variable

18

19 import utils

20 import datahandler

21 from dmm import DMM

22

23

24 class Trainer(object):

25 """

26 trainer class used to instantiate, train and validate a network

27 """

28

29 def __init__(self, args):

30

31 # argument gathering

32 self.rand_seed = args.rand_seed

33 self.dev_num = args.dev_num

34 self.cuda = args.cuda

35 self.n_epoch = args.n_epoch

36 self.batch_size = args.batch_size

37 self.lr = args.lr

38 self.beta1 = args.beta1

39 self.beta2 = args.beta2

40 self.wd = args.wd

41 self.cn = args.cn

42 self.lr_decay = args.lr_decay

43 self.kl_ae = args.kl_ae

44 self.maf = args.maf

45 self.dropout = args.dropout

46 self.ckpt_f = args.ckpt_f

47 self.load_opt = args.load_opt

48 self.load_model = args.load_model

49 self.save_opt = args.save_opt

50 self.save_model = args.save_model

ece467 - final project 11

51 self.maxlen = args.maxlen

52 # setup logging

53 self.log = utils.get_logger(args.log)

54 self.log(args)

55

56 def _validate(self, val_iter):

57 """

58 freezes training and validates on the network with a validation set

59 """

60 # freeze training

61 self.dmm.rnn.eval()

62 val_nll = 0

63 for ii, batch in enumerate(iter(val_iter)):

64

65 batch_data = Variable(batch.text[0].to(self.device))

66 seqlens = Variable(batch.text[1].to(self.device))

67

68 # transpose to [B, seqlen, vocab_size] shape

69 batch_data = torch.t(batch_data)

70 # compute one hot character embedding

71 batch_onehot = nn.functional.one_hot(batch_data, self.vocab_size).float()

72 # flip sequence for rnn

73 batch_reversed = utils.reverse_seq(batch_onehot, seqlens)

74 batch_reversed = nn.utils.rnn.pack_padded_sequence(

75 batch_reversed, seqlens, batch_first=True

76)

77 # compute temporal mask

78 batch_mask = utils.generate_batch_mask(batch_onehot, seqlens).cuda()

79 # perform evaluation

80 val_nll += self.svi.evaluate_loss(

81 batch_onehot, batch_reversed, batch_mask, seqlens

82)

83

84 # resume training

85 self.dmm.rnn.train()

86

87 loss = val_nll / self.N_val_data

88

89 return loss

90

91 def _train_batch(self, train_iter, epoch):

92 """

93 process a batch (single epoch)

94 """

95 batch_loss = 0

96 epoch_loss = 0

97 for ii, batch in enumerate(iter(train_iter)):

98

99 batch_data = Variable(batch.text[0].to(self.device))

100 seqlens = Variable(batch.text[1].to(self.device))

101

ece467 - final project 12

102 # transpose to [B, seqlen, vocab_size] shape

103 batch_data = torch.t(batch_data)

104 # compute one hot character embedding

105 batch_onehot = nn.functional.one_hot(batch_data, self.vocab_size).float()

106 # flip sequence for rnn

107 batch_reversed = utils.reverse_seq(batch_onehot, seqlens)

108 batch_reversed = nn.utils.rnn.pack_padded_sequence(

109 batch_reversed, seqlens, batch_first=True

110)

111 # compute temporal mask

112 batch_mask = utils.generate_batch_mask(batch_onehot, seqlens).cuda()

113

114 # compute kl-div annealing factor

115 if self.kl_ae > 0 and epoch < self.kl_ae:

116 min_af = self.maf

117 kl_anneal = min_af + (1 - min_af) * (

118 float(ii + epoch * self.N_batches + 1)

119 / float(self.kl_ae * self.N_batches)

120)

121 else:

122 # default kl-div annealing factor is unity

123 kl_anneal = 1.0

124

125 # take gradient step

126 batch_loss = self.svi.step(

127 batch_onehot, batch_reversed, batch_mask, seqlens, kl_anneal

128)

129 batch_loss = batch_loss / (torch.sum(seqlens).float())

130 print("loss at iteration {0} is {1}".format(ii, batch_loss))

131 epoch_loss = epoch_loss+batch_loss

132

133 return epoch_loss

134

135 def train(self):

136 """

137 trains a network with a given training set

138 """

139 self.device = torch.device("cuda")

140 np.random.seed(self.rand_seed)

141 torch.manual_seed(self.rand_seed)

142

143 train, val, test, vocab = datahandler.load_data("./data/ptb", self.maxlen)

144

145 self.vocab_size = len(vocab)

146

147 # make iterable dataset object

148 train_iter, val_iter, test_iter = torchtext.data.BucketIterator.splits(

149 (train, val, test),

150 batch_sizes=[self.batch_size, 1, 1],

151 device=self.device,

152 repeat=False,

ece467 - final project 13

153 sort_key=lambda x: len(x.text),

154 sort_within_batch=True,

155)

156 self.N_train_data = len(train)

157 self.N_val_data = len(val)

158 self.N_batches = int(

159 self.N_train_data / self.batch_size

160 + int(self.N_train_data % self.batch_size > 0)

161)

162

163 self.N_train_data = len(train)

164 self.N_val_data = len(val)

165 self.N_batches = int(

166 self.N_train_data / self.batch_size

167 + int(self.N_train_data % self.batch_size > 0)

168)

169 self.log("N_train_data: %d N_mini_batches: %d" % (self.N_train_data, self.N_batches))

170

171

172 # instantiate the dmm

173 self.dmm = DMM(input_dim=self.vocab_size, dropout=self.dropout)

174

175 # setup optimizer

176 opt_params = {

177 "lr": self.lr,

178 "betas": (self.beta1, self.beta2),

179 "clip_norm": self.cn,

180 "lrd": self.lr_decay,

181 "weight_decay": self.wd,

182 }

183 self.adam = ClippedAdam(opt_params)

184 # set up inference algorithm

185 self.elbo = Trace_ELBO()

186 self.svi = SVI(self.dmm.model, self.dmm.guide, self.adam, loss=self.elbo)

187

188 val_f = 10

189

190 print("training dmm")

191 times = [time.time()]

192 for epoch in range(self.n_epoch):

193

194 if self.ckpt_f > 0 and epoch > 0 and epoch % self.ckpt_f == 0:

195 self.save_ckpt()

196

197 # train and report metrics

198 train_nll = self._train_batch(train_iter, epoch,)

199

200 times.append(time.time())

201 t_elps = times[-1] - times[-2]

202 self.log(

203 "epoch %04d -> train nll: %.4f \t t_elps=%.3f sec"

ece467 - final project 14

204 % (epoch, train_nll, t_elps)

205)

206

207 if epoch % val_f == 0:

208 val_nll = self._validate(val_iter)

209 pass

210

211 def save_ckpt(self):

212 """

213 saves the state of the network and optimizer for later

214 """

215 self.log("saving model to %s" % self.save_model)

216 torch.save(self.dmm.state_dict(), self.save_model)

217 self.log("saving optimizer states to %s" % self.save_opt)

218 self.adam.save(self.save_opt)

219

220 pass

221

222 def load_ckpt(self):

223 """

224 loads a saved checkpoint

225 """

226 assert exists(args.load_opt) and exists(

227 args.load_model

228), "--load-model and/or --load-opt misspecified"

229 self.log("loading model from %s..." % self.load_model)

230 self.dmm.load_state_dict(torch.load(self.load_model))

231 self.log("loading optimizer states from %s..." % self.load_opt)

232 self.adam.load(self.load_opt)

233

234 pass

	Remarks
	Deep Markov Models
	Implementation Details
	Results & Discussion
	Conclusion
	Appendix A: Code

