forked from Theano/Theano
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path__init__.py
247 lines (199 loc) · 7.36 KB
/
__init__.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
"""
Theano is an optimizing compiler in Python, built to evaluate
complicated expressions (especially matrix-valued ones) as quickly as
possible. Theano compiles expression graphs (see :doc:`graph` ) that
are built by Python code. The expressions in these graphs are called
`Apply` nodes and the variables in these graphs are called `Variable`
nodes.
You compile a graph by calling `function`, which takes a graph, and
returns a callable object. One of theano's most important features is
that `function` can transform your graph before compiling it. It can
replace simple expressions with faster or more numerically stable
implementations.
To learn more, check out:
- Op List (:doc:`oplist`)
The markup language used in the docstrings is ReStructured Text,
which may be rendered with Sphinx. A rendered version is
maintained at http://www.deeplearning.net/software/theano/library/
"""
from __future__ import absolute_import, print_function, division
__docformat__ = "restructuredtext en"
# Set a default logger. It is important to do this before importing some other
# theano code, since this code may want to log some messages.
import logging
import os
import sys
import warnings
def has_handlers(logger):
# copied from Logger.hasHandlers() (introduced in Python 3.2)
_logger = logger
_has_handler = False
while _logger:
if _logger.handlers:
_has_handler = True
break
if not _logger.propagate:
break
else:
_logger = _logger.parent
return _has_handler
theano_logger = logging.getLogger("theano")
logging_default_handler = logging.StreamHandler()
logging_default_formatter = logging.Formatter(
fmt='%(levelname)s (%(name)s): %(message)s')
logging_default_handler.setFormatter(logging_default_formatter)
theano_logger.setLevel(logging.WARNING)
if has_handlers(theano_logger) is False:
theano_logger.addHandler(logging_default_handler)
# Disable default log handler added to theano_logger when the module
# is imported.
def disable_log_handler(logger=theano_logger, handler=logging_default_handler):
if has_handlers(logger):
logger.removeHandler(handler)
# Version information.
from theano.version import version as __version__
# Raise a meaning full warning/error if the theano directory is in the
# Python path.
from six import PY3
rpath = os.path.realpath(__path__[0])
for p in sys.path:
if os.path.realpath(p) != rpath:
continue
if PY3:
raise RuntimeError(
"You have the theano directory in your Python path."
" This do not work in Python 3.")
else:
warnings.warn(
"You have the theano directory in your Python path."
" This is will not work in Python 3.")
break
from theano.configdefaults import config
from theano.configparser import change_flags
# This is the api version for ops that generate C code. External ops
# might need manual changes if this number goes up. An undefined
# __api_version__ can be understood to mean api version 0.
#
# This number is not tied to the release version and should change
# very rarely.
__api_version__ = 1
from theano.gof import (
CLinker, OpWiseCLinker, DualLinker, Linker, LocalLinker, PerformLinker,
Container,
InconsistencyError, FunctionGraph,
Apply, Variable, Constant,
Op, OpenMPOp,
opt,
toolbox,
Type, Generic, generic,
object2, utils)
from theano.compile import (
SymbolicInput, In,
SymbolicOutput, Out,
Mode,
predefined_modes, predefined_linkers, predefined_optimizers,
FunctionMaker, function, function_dump,
OpFromGraph,
ProfileStats,
Param, shared, as_op)
from theano.misc.safe_asarray import _asarray
from theano.printing import pprint, pp
from theano.scan_module import (scan, map, reduce, foldl, foldr, clone,
scan_checkpoints)
from theano.updates import OrderedUpdates
# scan_module import above initializes tensor and scalar making these imports
# redundant
# import tensor
# import scalar
# we don't import by default as we don't want to force having scipy installed.
# import sparse
from theano.gradient import Rop, Lop, grad, subgraph_grad
# This need to be before the init of GPU, as it add config variable
# needed during that phase.
import theano.tests
if hasattr(theano.tests, "TheanoNoseTester"):
test = theano.tests.TheanoNoseTester().test
else:
def test():
raise ImportError("The nose module is not installed."
" It is needed for Theano tests.")
if (config.device.startswith('cuda') or
config.device.startswith('opencl') or
config.init_gpu_device.startswith('cuda') or
config.init_gpu_device.startswith('opencl') or
config.contexts != ''):
import theano.gpuarray
# Use config.numpy to call numpy.seterr
import numpy as np
if config.numpy.seterr_all == 'None':
_all = None
else:
_all = config.numpy.seterr_all
if config.numpy.seterr_divide == 'None':
_divide = None
else:
_divide = config.numpy.seterr_divide
if config.numpy.seterr_over == 'None':
_over = None
else:
_over = config.numpy.seterr_over
if config.numpy.seterr_under == 'None':
_under = None
else:
_under = config.numpy.seterr_under
if config.numpy.seterr_invalid == 'None':
_invalid = None
else:
_invalid = config.numpy.seterr_invalid
np.seterr(
all=_all,
divide=_divide,
over=_over,
under=_under,
invalid=_invalid)
del _all, _divide, _over, _under, _invalid
# This is defined here because it is designed to work across symbolic
# datatypes (Sparse and Tensor)
def dot(l, r):
"""Return a symbolic matrix/dot product between l and r """
rval = NotImplemented
e0, e1 = None, None
if rval == NotImplemented and hasattr(l, '__dot__'):
try:
rval = l.__dot__(r)
except Exception as e0:
rval = NotImplemented
if rval == NotImplemented and hasattr(r, '__rdot__'):
try:
rval = r.__rdot__(l)
except Exception as e1:
rval = NotImplemented
if rval == NotImplemented:
raise NotImplementedError("Dot failed for the following reasons:",
(e0, e1))
return rval
def get_scalar_constant_value(v):
"""return the constant scalar(0-D) value underlying variable `v`
If v is the output of dimshuffles, fills, allocs, rebroadcasts, cast
this function digs through them.
If theano.sparse is also there, we will look over CSM op.
If `v` is not some view of constant data, then raise a
tensor.basic.NotScalarConstantError.
"""
# Is it necessary to test for presence of theano.sparse at runtime?
if 'sparse' in globals() and isinstance(v.type, sparse.SparseType):
if v.owner is not None and isinstance(v.owner.op, sparse.CSM):
data = v.owner.inputs[0]
return tensor.get_scalar_constant_value(data)
return tensor.get_scalar_constant_value(v)
def sparse_grad(var):
"""This function return a new variable whose gradient will be
stored in a sparse format instead of dense.
Currently only variable created by AdvancedSubtensor1 is supported.
i.e. a_tensor_var[an_int_vector].
.. versionadded:: 0.6rc4
"""
assert isinstance(var.owner.op, tensor.AdvancedSubtensor1)
ret = var.owner.op.__class__(sparse_grad=True)(*var.owner.inputs)
return ret
__import__('theano.tensor.shared_randomstreams')