Skip to content

Latest commit

 

History

History
35 lines (26 loc) · 1.8 KB

tensorflow_model_support.md

File metadata and controls

35 lines (26 loc) · 1.8 KB

Tensorflow Model Support in Intel® Low Precision Optimization Tool

Intel® Low Precision Optimization Tool supports diffrent model formats of TensorFlow 1.x and 2.x.

TensorFlow model format Supported? Example Comments
frozen pb Yes examples/tensorflow/image_recognition, examples/tensorflow/oob_models
Graph object Yes examples/helloworld/tf1.x, examples/tensorflow/style_transfer, examples/tensorflow/recommendation/wide_deep_large_ds
GraphDef object Yes
tf1.x checkpoint Yes examples/tensorflow/object_detection
keras.Model object Yes examples/helloworld/tf2.x
keras saved model Yes examples/helloworld/tf2.x
tf2.x saved model TBD
tf2.x h5 format model TBD
slim checkpoint TBD
tf1.x saved model No No plan to support it
tf2.x checkpoint No As tf2.x checkpoint only has weight and does not contain any description of the computation, please use different tf2.x model for quantization

Usage

You can directly pass the directory or object to quantizer, for example:

from lpot import Quantization
quantizer = Quantization('./conf.yaml')
dataset = mnist_dataset(mnist.test.images, mnist.test.labels)
data_loader = quantizer.dataloader(dataset=dataset, batch_size=1)
model = frozen_pb/Graph/GraphDef/checkpoint_path/keras.Model/keras_savedmodel_path
q_model = quantizer(frozen_pb, q_dataloader=data_loader, eval_func=eval_func)