forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindexing.py
169 lines (137 loc) · 5.31 KB
/
indexing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
from vbench.benchmark import Benchmark
from datetime import datetime
SECTION = 'Indexing and scalar value access'
common_setup = """from pandas_vb_common import *
"""
#----------------------------------------------------------------------
# Series.__getitem__, get_value
setup = common_setup + """
tm.N = 1000
ts = tm.makeTimeSeries()
dt = ts.index[500]
"""
statement = "ts[dt]"
bm_getitem = Benchmark(statement, setup, ncalls=100000,
name='series_getitem_scalar')
setup = common_setup + """
index = [tm.rands(10) for _ in xrange(1000)]
s = Series(np.random.rand(1000), index=index)
idx = index[100]
"""
statement = "s.get_value(idx)"
bm_df_getitem3 = Benchmark(statement, setup,
name='series_get_value',
start_date=datetime(2011, 11, 12))
#----------------------------------------------------------------------
# DataFrame __getitem__
setup = common_setup + """
index = [tm.rands(10) for _ in xrange(1000)]
columns = [tm.rands(10) for _ in xrange(30)]
df = DataFrame(np.random.rand(1000, 30), index=index,
columns=columns)
idx = index[100]
col = columns[10]
"""
statement = "df[col][idx]"
bm_df_getitem = Benchmark(statement, setup,
name='dataframe_getitem_scalar')
setup = common_setup + """
try:
klass = DataMatrix
except:
klass = DataFrame
index = [tm.rands(10) for _ in xrange(1000)]
columns = [tm.rands(10) for _ in xrange(30)]
df = klass(np.random.rand(1000, 30), index=index,
columns=columns)
idx = index[100]
col = columns[10]
"""
statement = "df[col][idx]"
bm_df_getitem2 = Benchmark(statement, setup,
name='datamatrix_getitem_scalar')
#----------------------------------------------------------------------
# ix get scalar
setup = common_setup + """
index = [tm.rands(10) for _ in xrange(1000)]
columns = [tm.rands(10) for _ in xrange(30)]
df = DataFrame(np.random.randn(1000, 30), index=index,
columns=columns)
idx = index[100]
col = columns[10]
"""
indexing_frame_get_value_ix = Benchmark("df.ix[idx,col]", setup,
name='indexing_frame_get_value_ix',
start_date=datetime(2011, 11, 12))
indexing_frame_get_value = Benchmark("df.get_value(idx,col)", setup,
name='indexing_frame_get_value',
start_date=datetime(2011, 11, 12))
#----------------------------------------------------------------------
# Boolean DataFrame row selection
setup = common_setup + """
df = DataFrame(np.random.randn(10000, 4), columns=['A', 'B', 'C', 'D'])
indexer = df['B'] > 0
obj_indexer = indexer.astype('O')
"""
indexing_dataframe_boolean_rows = \
Benchmark("df[indexer]", setup, name='indexing_dataframe_boolean_rows')
indexing_dataframe_boolean_rows_object = \
Benchmark("df[obj_indexer]", setup,
name='indexing_dataframe_boolean_rows_object')
setup = common_setup + """
df = DataFrame(np.random.randn(50000, 100))
df2 = DataFrame(np.random.randn(50000, 100))
"""
indexing_dataframe_boolean = \
Benchmark("df > df2", setup, name='indexing_dataframe_boolean',
start_date=datetime(2012, 1, 1))
setup = common_setup + """
import pandas.computation.expressions as expr
df = DataFrame(np.random.randn(50000, 100))
df2 = DataFrame(np.random.randn(50000, 100))
expr.set_numexpr_threads(1)
"""
indexing_dataframe_boolean_st = \
Benchmark("df > df2", setup, name='indexing_dataframe_boolean_st',cleanup="expr.set_numexpr_threads()",
start_date=datetime(2013, 2, 26))
setup = common_setup + """
import pandas.computation.expressions as expr
df = DataFrame(np.random.randn(50000, 100))
df2 = DataFrame(np.random.randn(50000, 100))
expr.set_use_numexpr(False)
"""
indexing_dataframe_boolean_no_ne = \
Benchmark("df > df2", setup, name='indexing_dataframe_boolean_no_ne',cleanup="expr.set_use_numexpr(True)",
start_date=datetime(2013, 2, 26))
#----------------------------------------------------------------------
# MultiIndex sortlevel
setup = common_setup + """
a = np.repeat(np.arange(100), 1000)
b = np.tile(np.arange(1000), 100)
midx = MultiIndex.from_arrays([a, b])
midx = midx.take(np.random.permutation(np.arange(100000)))
"""
sort_level_zero = Benchmark("midx.sortlevel(0)", setup,
start_date=datetime(2012, 1, 1))
sort_level_one = Benchmark("midx.sortlevel(1)", setup,
start_date=datetime(2012, 1, 1))
#----------------------------------------------------------------------
# Panel subset selection
setup = common_setup + """
p = Panel(np.random.randn(100, 100, 100))
inds = range(0, 100, 10)
"""
indexing_panel_subset = Benchmark('p.ix[inds, inds, inds]', setup,
start_date=datetime(2012, 1, 1))
#----------------------------------------------------------------------
# Iloc
setup = common_setup + """
df = DataFrame({'A' : [0.1] * 3000, 'B' : [1] * 3000})
idx = np.array(range(30)) * 99
df2 = DataFrame({'A' : [0.1] * 1000, 'B' : [1] * 1000})
df2 = concat([df2, 2*df2, 3*df2])
"""
frame_iloc_dups = Benchmark('df2.iloc[idx]', setup,
start_date=datetime(2013, 1, 1))
frame_loc_dups = Benchmark('df2.loc[idx]', setup,
start_date=datetime(2013, 1, 1))