|
43 | 43 |
|
44 | 44 | ## Solutions
|
45 | 45 |
|
| 46 | +The point with zero out-degree is safe, and if a point can **only** reach the safe point, then it is also safe, so the problem can be converted to topological sorting. |
| 47 | + |
46 | 48 | <!-- tabs:start -->
|
47 | 49 |
|
48 | 50 | ### **Python3**
|
49 | 51 |
|
50 | 52 | ```python
|
51 |
| - |
| 53 | +class Solution: |
| 54 | + def eventualSafeNodes(self, graph: List[List[int]]) -> List[int]: |
| 55 | + n = len(graph) |
| 56 | + outDegree = [len(vs) for vs in graph] |
| 57 | + revGraph = [[] for _ in range(n)] |
| 58 | + for u, vs in enumerate(graph): |
| 59 | + for v in vs: |
| 60 | + revGraph[v].append(u) |
| 61 | + q = deque([i for i, d in enumerate(outDegree) if d == 0]) |
| 62 | + while q: |
| 63 | + for u in revGraph[q.popleft()]: |
| 64 | + outDegree[u] -= 1 |
| 65 | + if outDegree[u] == 0: |
| 66 | + q.append(u) |
| 67 | + return [i for i, d in enumerate(outDegree) if d == 0] |
52 | 68 | ```
|
53 | 69 |
|
54 | 70 | ### **Java**
|
55 | 71 |
|
56 | 72 | ```java
|
| 73 | +class Solution { |
| 74 | + public List<Integer> eventualSafeNodes(int[][] graph) { |
| 75 | + int n = graph.length; |
| 76 | + int[] outDegrees = new int[n]; |
| 77 | + Queue<Integer> queue = new ArrayDeque<>(); |
| 78 | + List<List<Integer>> revGraph = new ArrayList<>(); |
| 79 | + for (int i = 0; i < n; i++) { |
| 80 | + revGraph.add(new ArrayList<>()); |
| 81 | + } |
| 82 | + for (int u = 0; u < n; u++) { |
| 83 | + for (int v : graph[u]) { |
| 84 | + revGraph.get(v).add(u); |
| 85 | + } |
| 86 | + outDegrees[u] = graph[u].length; |
| 87 | + if (outDegrees[u] == 0) { |
| 88 | + queue.offer(u); |
| 89 | + } |
| 90 | + } |
| 91 | + |
| 92 | + while (!queue.isEmpty()) { |
| 93 | + int v = queue.poll(); |
| 94 | + for (int u : revGraph.get(v)) { |
| 95 | + if (--outDegrees[u] == 0) { |
| 96 | + queue.offer(u); |
| 97 | + } |
| 98 | + } |
| 99 | + } |
| 100 | + |
| 101 | + List<Integer> ans = new ArrayList<>(); |
| 102 | + for (int i = 0; i < n; i++) { |
| 103 | + if (outDegrees[i] == 0) { |
| 104 | + ans.add(i); |
| 105 | + } |
| 106 | + } |
| 107 | + return ans; |
| 108 | + } |
| 109 | +} |
| 110 | +``` |
57 | 111 |
|
| 112 | +### **Go** |
| 113 | + |
| 114 | +```go |
| 115 | +func eventualSafeNodes(graph [][]int) []int { |
| 116 | + n := len(graph) |
| 117 | + outDegree := make([]int, n) |
| 118 | + revGraph := make([][]int, n) |
| 119 | + queue := make([]int, 0) |
| 120 | + ans := make([]int, 0) |
| 121 | + |
| 122 | + for u, vs := range graph { |
| 123 | + for _, v := range vs { |
| 124 | + revGraph[v] = append(revGraph[v], u) |
| 125 | + } |
| 126 | + outDegree[u] = len(vs) |
| 127 | + if outDegree[u] == 0 { |
| 128 | + queue = append(queue, u) |
| 129 | + } |
| 130 | + } |
| 131 | + |
| 132 | + for len(queue) > 0 { |
| 133 | + v := queue[0] |
| 134 | + queue = queue[1:] |
| 135 | + for _, u := range revGraph[v] { |
| 136 | + outDegree[u]-- |
| 137 | + if outDegree[u] == 0 { |
| 138 | + queue = append(queue, u) |
| 139 | + } |
| 140 | + } |
| 141 | + } |
| 142 | + |
| 143 | + for i, d := range outDegree { |
| 144 | + if d == 0 { |
| 145 | + ans = append(ans, i) |
| 146 | + } |
| 147 | + } |
| 148 | + return ans |
| 149 | +} |
58 | 150 | ```
|
59 | 151 |
|
60 | 152 | ### **...**
|
|
0 commit comments