-
Notifications
You must be signed in to change notification settings - Fork 236
/
Copy pathtrain_net.py
106 lines (89 loc) · 3.13 KB
/
train_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import h5py
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.utils.data as data
import sys
class H5Dataset(data.Dataset):
def __init__(self, file_path):
super(H5Dataset, self).__init__()
h5_file = h5py.File(file_path)
self.data = h5_file.get('images')
self.target = h5_file.get('labels')
def __getitem__(self, index):
data = self.data[index,:,:].astype('float32')
# ptorch uses NCHW format
data = data.reshape((data.shape[2], data.shape[0], data.shape[1]))
target = self.target[index,:].astype('int32')[0]
return (data, target)
def __len__(self):
return self.data.shape[0]
class Net(nn.Module):
def __init__(self, input_channels):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(input_channels, 20, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(20, 50, 5)
self.fc1 = nn.Linear(50 * 12 * 12, 500)
self.fc2 = nn.Linear(500, 2)
# self.fc2 = nn.Linear(120, 84)
# self.fc3 = nn.Linear(84, 2)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 50 * x.shape[2] * x.shape[3])
x = F.relu(self.fc1(x))
x = self.fc2(x)
# x = F.relu(self.fc2(x))
# x = self.fc3(x)
return x
# Load the training data.
dset = H5Dataset(sys.argv[1])
train_loader = data.DataLoader(dset, batch_size=64, shuffle=True)
# Create the network.
input_channels = int(sys.argv[3])
net = Net(input_channels)
print net
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(device)
net.to(device)
# Define the loss function and optimizer.
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.00001, momentum=0.9)
num_epochs = 1
for epoch in range(num_epochs): # loop over the dataset multiple times
running_loss = 0.0
for i, data in enumerate(train_loader, 0):
# get the inputs
inputs, labels = data
inputs, labels = inputs.to(device), labels.to(device)
# zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
outputs = net(inputs)
loss = criterion(outputs, labels.long())
loss.backward()
optimizer.step()
# print statistics
running_loss += loss.item()
if i % 10 == 9: # print every 10 mini-batches
print('[%d, %5d] loss: %.5f' %
(epoch + 1, i + 1, running_loss / 10))
running_loss = 0.0
print('Finished Training')
# Test the network on the test data.
test_set = H5Dataset(sys.argv[2])
test_loader = data.DataLoader(test_set, batch_size=64, shuffle=True)
correct = 0
total = 0
with torch.no_grad():
for data in testloader:
images, labels = data
outputs = net(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the network on the 10000 test images: %d %%' % (
100 * correct / total))