forked from facebookresearch/demucs
-
Notifications
You must be signed in to change notification settings - Fork 0
/
automix.py
343 lines (290 loc) · 10.8 KB
/
automix.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
# Copyright (c) Meta, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
"""
This script creates realistic mixes with stems from different songs.
In particular, it will align BPM, sync up the first beat and perform pitch
shift to maximize pitches overlap.
In order to limit artifacts, only parts that can be mixed with less than 15%
tempo shift, and 3 semitones of pitch shift are mixed together.
"""
from collections import namedtuple
from concurrent.futures import ProcessPoolExecutor
import hashlib
from pathlib import Path
import random
import shutil
import tqdm
import pickle
from librosa.beat import beat_track
from librosa.feature import chroma_cqt
import numpy as np
import torch
from torch.nn import functional as F
from dora.utils import try_load
from demucs.audio import save_audio
from demucs.repitch import repitch
from demucs.pretrained import SOURCES
from demucs.wav import build_metadata, Wavset, _get_musdb_valid
MUSDB_PATH = '/checkpoint/defossez/datasets/musdbhq'
EXTRA_WAV_PATH = "/checkpoint/defossez/datasets/allstems_44"
# WARNING: OUTPATH will be completely erased.
OUTPATH = Path.home() / 'tmp/demucs_mdx/automix_musdb/'
CACHE = Path.home() / 'tmp/automix_cache' # cache BPM and pitch information.
CHANNELS = 2
SR = 44100
MAX_PITCH = 3 # maximum allowable pitch shift in semi tones
MAX_TEMPO = 0.15 # maximum allowable tempo shift
Spec = namedtuple("Spec", "tempo onsets kr track index")
def rms(wav, window=10000):
"""efficient rms computed for each time step over a given window."""
half = window // 2
window = 2 * half + 1
wav = F.pad(wav, (half, half))
tot = wav.pow(2).cumsum(dim=-1)
return ((tot[..., window - 1:] - tot[..., :-window + 1]) / window).sqrt()
def analyse_track(dset, index):
"""analyse track, extract bpm and distribution of notes from the bass line."""
track = dset[index]
mix = track.sum(0).mean(0)
ref = mix.std()
starts = (abs(mix) >= 1e-2 * ref).float().argmax().item()
track = track[..., starts:]
cache = CACHE / dset.sig
cache.mkdir(exist_ok=True, parents=True)
cache_file = cache / f"{index}.pkl"
cached = None
if cache_file.exists():
cached = try_load(cache_file)
if cached is not None:
tempo, events, hist_kr = cached
if cached is None:
drums = track[0].mean(0)
if drums.std() > 1e-2 * ref:
tempo, events = beat_track(drums.numpy(), units='time', sr=SR)
else:
print("failed drums", drums.std(), ref)
return None, track
bass = track[1].mean(0)
r = rms(bass)
peak = r.max()
mask = r >= 0.05 * peak
bass = bass[mask]
if bass.std() > 1e-2 * ref:
kr = torch.from_numpy(chroma_cqt(bass.numpy(), sr=SR))
hist_kr = (kr.max(dim=0, keepdim=True)[0] == kr).float().mean(1)
else:
print("failed bass", bass.std(), ref)
return None, track
pickle.dump([tempo, events, hist_kr], open(cache_file, 'wb'))
spec = Spec(tempo, events, hist_kr, track, index)
return spec, None
def best_pitch_shift(kr_a, kr_b):
"""find the best pitch shift between two chroma distributions."""
deltas = []
for p in range(12):
deltas.append((kr_a - kr_b).abs().mean())
kr_b = kr_b.roll(1, 0)
ps = np.argmin(deltas)
if ps > 6:
ps = ps - 12
return ps
def align_stems(stems):
"""Align the first beats of the stems.
This is a naive implementation. A grid with a time definition 10ms is defined and
each beat onset is represented as a gaussian over this grid.
Then, we try each possible time shift to make two grids align the best.
We repeat for all sources.
"""
sources = len(stems)
width = 5e-3 # grid of 10ms
limit = 5
std = 2
x = torch.arange(-limit, limit + 1, 1).float()
gauss = torch.exp(-x**2 / (2 * std**2))
grids = []
for wav, onsets in stems:
le = wav.shape[-1]
dur = le / SR
grid = torch.zeros(int(le / width / SR))
for onset in onsets:
pos = int(onset / width)
if onset >= dur - 1:
continue
if onset < 1:
continue
grid[pos - limit:pos + limit + 1] += gauss
grids.append(grid)
shifts = [0]
for s in range(1, sources):
max_shift = int(4 / width)
dots = []
for shift in range(-max_shift, max_shift):
other = grids[s]
ref = grids[0]
if shift >= 0:
other = other[shift:]
else:
ref = ref[shift:]
le = min(len(other), len(ref))
dots.append((ref[:le].dot(other[:le]), int(shift * width * SR)))
_, shift = max(dots)
shifts.append(-shift)
outs = []
new_zero = min(shifts)
for (wav, _), shift in zip(stems, shifts):
offset = shift - new_zero
wav = F.pad(wav, (offset, 0))
outs.append(wav)
le = min(x.shape[-1] for x in outs)
outs = [w[..., :le] for w in outs]
return torch.stack(outs)
def find_candidate(spec_ref, catalog, pitch_match=True):
"""Given reference track, this finds a track in the catalog that
is a potential match (pitch and tempo delta must be within the allowable limits).
"""
candidates = list(catalog)
random.shuffle(candidates)
for spec in candidates:
ok = False
for scale in [1/4, 1/2, 1, 2, 4]:
tempo = spec.tempo * scale
delta_tempo = spec_ref.tempo / tempo - 1
if abs(delta_tempo) < MAX_TEMPO:
ok = True
break
if not ok:
print(delta_tempo, spec_ref.tempo, spec.tempo, "FAILED TEMPO")
# too much of a tempo difference
continue
spec = spec._replace(tempo=tempo)
ps = 0
if pitch_match:
ps = best_pitch_shift(spec_ref.kr, spec.kr)
if abs(ps) > MAX_PITCH:
print("Failed pitch", ps)
# too much pitch difference
continue
return spec, delta_tempo, ps
def get_part(spec, source, dt, dp):
"""Apply given delta of tempo and delta of pitch to a stem."""
wav = spec.track[source]
if dt or dp:
wav = repitch(wav, dp, dt * 100, samplerate=SR, voice=source == 3)
spec = spec._replace(onsets=spec.onsets / (1 + dt))
return wav, spec
def build_track(ref_index, catalog):
"""Given the reference track index and a catalog of track, builds
a completely new track. One of the source at random from the ref track will
be kept and other sources will be drawn from the catalog.
"""
order = list(range(len(SOURCES)))
random.shuffle(order)
stems = [None] * len(order)
indexes = [None] * len(order)
origs = [None] * len(order)
dps = [None] * len(order)
dts = [None] * len(order)
first = order[0]
spec_ref = catalog[ref_index]
stems[first] = (spec_ref.track[first], spec_ref.onsets)
indexes[first] = ref_index
origs[first] = spec_ref.track[first]
dps[first] = 0
dts[first] = 0
pitch_match = order != 0
for src in order[1:]:
spec, dt, dp = find_candidate(spec_ref, catalog, pitch_match=pitch_match)
if not pitch_match:
spec_ref = spec_ref._replace(kr=spec.kr)
pitch_match = True
dps[src] = dp
dts[src] = dt
wav, spec = get_part(spec, src, dt, dp)
stems[src] = (wav, spec.onsets)
indexes[src] = spec.index
origs.append(spec.track[src])
print("FINAL CHOICES", ref_index, indexes, dps, dts)
stems = align_stems(stems)
return stems, origs
def get_musdb_dataset(part='train'):
root = Path(MUSDB_PATH) / part
ext = '.wav'
metadata = build_metadata(root, SOURCES, ext=ext, normalize=False)
valid_tracks = _get_musdb_valid()
metadata_train = {name: meta for name, meta in metadata.items() if name not in valid_tracks}
train_set = Wavset(
root, metadata_train, SOURCES, samplerate=SR, channels=CHANNELS,
normalize=False, ext=ext)
sig = hashlib.sha1(str(root).encode()).hexdigest()[:8]
train_set.sig = sig
return train_set
def get_wav_dataset():
root = Path(EXTRA_WAV_PATH)
ext = '.wav'
metadata = _build_metadata(root, SOURCES, ext=ext, normalize=False)
train_set = Wavset(
root, metadata, SOURCES, samplerate=SR, channels=CHANNELS,
normalize=False, ext=ext)
sig = hashlib.sha1(str(root).encode()).hexdigest()[:8]
train_set.sig = sig
return train_set
def main():
random.seed(4321)
if OUTPATH.exists():
shutil.rmtree(OUTPATH)
OUTPATH.mkdir(exist_ok=True, parents=True)
(OUTPATH / 'train').mkdir(exist_ok=True, parents=True)
(OUTPATH / 'valid').mkdir(exist_ok=True, parents=True)
out = OUTPATH / 'train'
dset = get_musdb_dataset()
# dset2 = get_wav_dataset()
# dset3 = get_musdb_dataset('test')
dset2 = None
dset3 = None
pendings = []
copies = 6
copies_rej = 2
with ProcessPoolExecutor(20) as pool:
for index in range(len(dset)):
pendings.append(pool.submit(analyse_track, dset, index))
if dset2:
for index in range(len(dset2)):
pendings.append(pool.submit(analyse_track, dset2, index))
if dset3:
for index in range(len(dset3)):
pendings.append(pool.submit(analyse_track, dset3, index))
catalog = []
rej = 0
for pending in tqdm.tqdm(pendings, ncols=120):
spec, track = pending.result()
if spec is not None:
catalog.append(spec)
else:
mix = track.sum(0)
for copy in range(copies_rej):
folder = out / f'rej_{rej}_{copy}'
folder.mkdir()
save_audio(mix, folder / "mixture.wav", SR)
for stem, source in zip(track, SOURCES):
save_audio(stem, folder / f"{source}.wav", SR, clip='clamp')
rej += 1
for copy in range(copies):
for index in range(len(catalog)):
track, origs = build_track(index, catalog)
mix = track.sum(0)
mx = mix.abs().max()
scale = max(1, 1.01 * mx)
mix = mix / scale
track = track / scale
folder = out / f'{copy}_{index}'
folder.mkdir()
save_audio(mix, folder / "mixture.wav", SR)
for stem, source, orig in zip(track, SOURCES, origs):
save_audio(stem, folder / f"{source}.wav", SR, clip='clamp')
# save_audio(stem.std() * orig / (1e-6 + orig.std()), folder / f"{source}_orig.wav",
# SR, clip='clamp')
if __name__ == '__main__':
main()