-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvae_train.py
220 lines (169 loc) · 7.12 KB
/
vae_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import os
import sys
import time
import torch
import logging
import datetime
import numpy as np
from vae_trainer import VAETrainer
from tensorboardX import SummaryWriter
from torch.utils.data import DataLoader
sys.path.append('..')
# from eval import evaluate
from datasets.dataset import TrainDataset
from utils.eval import accuracy, f1_score
from utils.log_helper import init_log, log_grads, track
from utils.misc import AverageMeter, compute_eta_time, mkdir, set_seed
TRAIN_START_EPOCH = 0
TRAIN_END_EPOCH = 20
TRAIN_LOG_INTERVAL = 50
TRAIN_PRINT_SPEED_INTERVAL = 50
TRAIN_VAL_EPOCH = 0
EXPERIMENT = "vae_baseline"
TRAIN_EVAL_IN_TRAINSET = True
TRAIN_LOG_DIR = './logs'
GPU_IDS = [0]
RANDOM_SEED = 520
DATASET_DATA_ROOT = '../../nor_split_datasets'
TRAIN_BATCH_SIZE = 128
VAL_BATCH_SIZE = 128
TRAIN_RESUME = False
TRAIN_RESUME_PATH = ''
def train(trainer, dataloader, val_dataloader, file_writer):
best_f1_micro = 0
best_epoch = 0
num_batch_per_epoch = len(dataloader)
for epoch in range(TRAIN_START_EPOCH+1, TRAIN_END_EPOCH+1):
trainer.model.train()
train_loss = AverageMeter()
batch_time = AverageMeter()
iter_begin = time.time()
epoch_begin = time.time()
train_time = 0
val_time = 0
for iter, data in enumerate(track(dataloader)):
seqs = data['seq'].cuda()
labels = data['label'].cuda()
trainer.train_step(seqs, labels)
train_loss.update(trainer.loss_dict['total_loss'])
batch_time.update(time.time()-iter_begin)
iter_begin = time.time()
if iter % TRAIN_LOG_INTERVAL == 0:
step = (epoch-1) * num_batch_per_epoch + iter
for k, v in trainer.loss_dict.items():
file_writer.add_scalar(k, v, global_step=step)
if iter % TRAIN_PRINT_SPEED_INTERVAL == 0:
step = (epoch-1) * num_batch_per_epoch + iter
total_step = TRAIN_END_EPOCH * num_batch_per_epoch
eta_day, eta_hour, eta_min = compute_eta_time(step,
batch_time.avg,
total_step)
info = f'Progress: {step:d} / {total_step} [{step/total_step:.2%}], ' \
f'remaining time: {eta_day:d}:{eta_hour:02d}:{eta_min:02d} (D:H:M)'
for k, v in trainer.loss_dict.items():
info += f', {k}: {v:.6f}'
logging.info(info)
logging.info(
f'Experiment: {EXPERIMENT}, epoch: {epoch},'
f' avg train loss: {train_loss.avg:.6f}, lr: {trainer.get_last_lr()}'
)
trainer.update_learning_rate()
train_time = time.time()-epoch_begin
if epoch >= TRAIN_VAL_EPOCH:
val_begin = time.time()
if TRAIN_EVAL_IN_TRAINSET:
results = evaluate(trainer, dataloader)
train_top1_accuracy = results['top1']
train_f1_macro = results['f1_macro']
train_f1_micro = results['f1_micro']
logging.info(
f'Experiment: {EXPERIMENT}, epoch: {epoch}, '
f'train top1 accuracy: {train_top1_accuracy:.6f},'
f' train f1 macro: {train_f1_macro:.6f}, train f1 micro: {train_f1_micro:.6f}')
results = evaluate(trainer, val_dataloader)
top1_accuracy = results['top1']
f1_macro = results['f1_macro']
f1_micro = results['f1_micro']
logging.info(
f'Experiment: {EXPERIMENT}, epoch: {epoch},'
f' train_f1_macro: {train_f1_macro: .6f},'
f' train_f1_micro: {train_f1_micro: .6f}, '
f'top1 accuracy: {top1_accuracy:.6f}, '
f'f1 macro: {f1_macro:.6f}, '
f'f1 micro: {f1_micro:.6f}'
)
file_writer.add_scalar('train_f1_macro', train_f1_macro, global_step=epoch)
file_writer.add_scalar('train_f1_micro', train_f1_micro, global_step=epoch)
file_writer.add_scalar('top1_accuracy', top1_accuracy, global_step=epoch)
file_writer.add_scalar('f1_macro', f1_macro, global_step=epoch)
file_writer.add_scalar('f1_micro', f1_micro, global_step=epoch)
if f1_micro > best_f1_micro:
best_f1_micro = f1_micro
best_epoch = epoch
checkpoint_dir = os.path.join(TRAIN_LOG_DIR, EXPERIMENT, 'checkpoints')
trainer.save_model(checkpoint_dir, epoch)
val_time = time.time()-val_begin
logging.info(
f'Experiment: {EXPERIMENT}, epoch: {epoch}, '
f'train time: {datetime.timedelta(seconds=int(train_time))},'
f'val time: {datetime.timedelta(seconds=int(val_time))}'
)
logging.info(
f'Experiment: {EXPERIMENT},'
f' best epoch: {best_epoch}, '
f'best f1 micro: {best_f1_micro}'
)
@torch.no_grad()
def evaluate(trainer, val_dataloader):
batch_time = AverageMeter()
top1 = AverageMeter()
f1_macro = AverageMeter()
f1_micro = AverageMeter()
# switch to evaluate mode
trainer.model.eval()
end = time.time()
for i, data in enumerate(track(val_dataloader)):
seqs = data['seq'].cuda()
labels = data['label'].cuda()
args = trainer.model(seqs)
preds = args[2]
# measure accuracy and record loss
prec1 = accuracy(preds, labels, topk=(1, ))
prec1 = prec1[0]
top1.update(prec1.item(), seqs.size(0))
f1_macro_ = f1_score(preds, labels, 'macro')
f1_micro_ = f1_score(preds, labels, 'micro')
f1_macro.update(f1_macro_, seqs.size(0))
f1_micro.update(f1_micro_, seqs.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
return {
'top1': top1.avg,
'f1_macro': f1_macro.avg,
'f1_micro': f1_micro.avg
}
def main(lr=0.001):
# if args.cfg is not None:
# cfg.merge_from_file(args.cfg)
os.environ["CUDA_VISIBLE_DEVICES"] = ",".join([str(gpu) for gpu in GPU_IDS])
set_seed(RANDOM_SEED)
log_dir = os.path.join(TRAIN_LOG_DIR, EXPERIMENT, 'logs')
mkdir(log_dir)
checkpoint_dir = os.path.join(TRAIN_LOG_DIR, EXPERIMENT, 'checkpoints')
mkdir(checkpoint_dir)
init_log(log_dir=log_dir)
# logging.info(json.dumps(cfg, indent=4))
file_writer = SummaryWriter(log_dir)
train_dataset = TrainDataset(data_root=DATASET_DATA_ROOT, data_type='train')
train_dataloader = DataLoader(train_dataset, batch_size=TRAIN_BATCH_SIZE,
shuffle=True, num_workers=4)
val_dataset = TrainDataset(data_root=DATASET_DATA_ROOT, data_type='val')
val_dataloader = DataLoader(val_dataset, batch_size=VAL_BATCH_SIZE, shuffle=False, num_workers=4)
trainer = VAETrainer(lr)
if TRAIN_RESUME:
TRAIN_START_EPOCH = trainer.resume_model(TRAIN_RESUME_PATH)
train(trainer, train_dataloader, val_dataloader, file_writer)
if __name__ == '__main__':
learning_rate = np.float(sys.argv[1])
main(lr=learning_rate)