forked from dmlc/xgboost
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgbtree.cc
749 lines (716 loc) · 26 KB
/
gbtree.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
/*!
* Copyright 2014 by Contributors
* \file gbtree.cc
* \brief gradient boosted tree implementation.
* \author Tianqi Chen
*/
#include <dmlc/omp.h>
#include <dmlc/parameter.h>
#include <xgboost/logging.h>
#include <xgboost/gbm.h>
#include <xgboost/tree_updater.h>
#include <vector>
#include <memory>
#include <utility>
#include <string>
#include <limits>
#include "../common/common.h"
#include "../common/random.h"
namespace xgboost {
namespace gbm {
DMLC_REGISTRY_FILE_TAG(gbtree);
/*! \brief training parameters */
struct GBTreeTrainParam : public dmlc::Parameter<GBTreeTrainParam> {
/*! \brief number of threads */
int nthread;
/*!
* \brief number of parallel trees constructed each iteration
* use this option to support boosted random forest
*/
int num_parallel_tree;
/*! \brief tree updater sequence */
std::string updater_seq;
// declare parameters
DMLC_DECLARE_PARAMETER(GBTreeTrainParam) {
DMLC_DECLARE_FIELD(nthread).set_lower_bound(0).set_default(0)
.describe("Number of threads used for training.");
DMLC_DECLARE_FIELD(num_parallel_tree).set_lower_bound(1).set_default(1)
.describe("Number of parallel trees constructed during each iteration."\
" This option is used to support boosted random forest");
DMLC_DECLARE_FIELD(updater_seq).set_default("grow_colmaker,prune")
.describe("Tree updater sequence.");
// add alias
DMLC_DECLARE_ALIAS(updater_seq, updater);
}
};
/*! \brief training parameters */
struct DartTrainParam : public dmlc::Parameter<DartTrainParam> {
/*! \brief whether to not print info during training */
bool silent;
/*! \brief type of sampling algorithm */
int sample_type;
/*! \brief type of normalization algorithm */
int normalize_type;
/*! \brief how many trees are dropped */
float rate_drop;
/*! \brief whether to drop trees */
float skip_drop;
/*! \brief learning step size for a time */
float learning_rate;
// declare parameters
DMLC_DECLARE_PARAMETER(DartTrainParam) {
DMLC_DECLARE_FIELD(silent).set_default(false)
.describe("Not print information during trainig.");
DMLC_DECLARE_FIELD(sample_type).set_default(0)
.add_enum("uniform", 0)
.add_enum("weighted", 1)
.describe("Different types of sampling algorithm.");
DMLC_DECLARE_FIELD(normalize_type).set_default(0)
.add_enum("tree", 0)
.add_enum("forest", 1)
.describe("Different types of normalization algorithm.");
DMLC_DECLARE_FIELD(rate_drop).set_range(0.0f, 1.0f).set_default(0.0f)
.describe("Parameter of how many trees are dropped.");
DMLC_DECLARE_FIELD(skip_drop).set_range(0.0f, 1.0f).set_default(0.0f)
.describe("Parameter of whether to drop trees.");
DMLC_DECLARE_FIELD(learning_rate).set_lower_bound(0.0f).set_default(0.3f)
.describe("Learning rate(step size) of update.");
DMLC_DECLARE_ALIAS(learning_rate, eta);
}
};
/*! \brief model parameters */
struct GBTreeModelParam : public dmlc::Parameter<GBTreeModelParam> {
/*! \brief number of trees */
int num_trees;
/*! \brief number of roots */
int num_roots;
/*! \brief number of features to be used by trees */
int num_feature;
/*! \brief pad this space, for backward compatiblity reason.*/
int pad_32bit;
/*! \brief deprecated padding space. */
int64_t num_pbuffer_deprecated;
/*!
* \brief how many output group a single instance can produce
* this affects the behavior of number of output we have:
* suppose we have n instance and k group, output will be k * n
*/
int num_output_group;
/*! \brief size of leaf vector needed in tree */
int size_leaf_vector;
/*! \brief reserved parameters */
int reserved[32];
/*! \brief constructor */
GBTreeModelParam() {
std::memset(this, 0, sizeof(GBTreeModelParam));
static_assert(sizeof(GBTreeModelParam) == (4 + 2 + 2 + 32) * sizeof(int),
"64/32 bit compatibility issue");
}
// declare parameters, only declare those that need to be set.
DMLC_DECLARE_PARAMETER(GBTreeModelParam) {
DMLC_DECLARE_FIELD(num_output_group).set_lower_bound(1).set_default(1)
.describe("Number of output groups to be predicted,"\
" used for multi-class classification.");
DMLC_DECLARE_FIELD(num_roots).set_lower_bound(1).set_default(1)
.describe("Tree updater sequence.");
DMLC_DECLARE_FIELD(num_feature).set_lower_bound(0)
.describe("Number of features used for training and prediction.");
DMLC_DECLARE_FIELD(size_leaf_vector).set_lower_bound(0).set_default(0)
.describe("Reserved option for vector tree.");
}
};
// gradient boosted trees
class GBTree : public GradientBooster {
public:
GBTree() : num_pbuffer(0) {}
void Configure(const std::vector<std::pair<std::string, std::string> >& cfg) override {
this->cfg = cfg;
// initialize model parameters if not yet been initialized.
if (trees.size() == 0) {
mparam.InitAllowUnknown(cfg);
}
// initialize the updaters only when needed.
std::string updater_seq = tparam.updater_seq;
tparam.InitAllowUnknown(cfg);
if (updater_seq != tparam.updater_seq) updaters.clear();
for (const auto& up : updaters) {
up->Init(cfg);
}
if (tparam.nthread != 0) {
omp_set_num_threads(tparam.nthread);
}
}
void Load(dmlc::Stream* fi) override {
CHECK_EQ(fi->Read(&mparam, sizeof(mparam)), sizeof(mparam))
<< "GBTree: invalid model file";
trees.clear();
for (int i = 0; i < mparam.num_trees; ++i) {
std::unique_ptr<RegTree> ptr(new RegTree());
ptr->Load(fi);
trees.push_back(std::move(ptr));
}
tree_info.resize(mparam.num_trees);
if (mparam.num_trees != 0) {
CHECK_EQ(fi->Read(dmlc::BeginPtr(tree_info), sizeof(int) * mparam.num_trees),
sizeof(int) * mparam.num_trees);
}
this->cfg.clear();
this->cfg.push_back(std::make_pair(std::string("num_feature"),
common::ToString(mparam.num_feature)));
// clear the predict buffer.
this->ResetPredBuffer(num_pbuffer);
}
void Save(dmlc::Stream* fo) const override {
CHECK_EQ(mparam.num_trees, static_cast<int>(trees.size()));
fo->Write(&mparam, sizeof(mparam));
for (size_t i = 0; i < trees.size(); ++i) {
trees[i]->Save(fo);
}
if (tree_info.size() != 0) {
fo->Write(dmlc::BeginPtr(tree_info), sizeof(int) * tree_info.size());
}
}
void ResetPredBuffer(size_t num_pbuffer) override {
this->num_pbuffer = num_pbuffer;
pred_buffer.clear();
pred_counter.clear();
pred_buffer.resize(this->PredBufferSize(), 0.0f);
pred_counter.resize(this->PredBufferSize(), 0);
}
bool AllowLazyCheckPoint() const override {
return mparam.num_output_group == 1 ||
tparam.updater_seq.find("distcol") != std::string::npos;
}
void DoBoost(DMatrix* p_fmat,
int64_t buffer_offset,
std::vector<bst_gpair>* in_gpair) override {
const std::vector<bst_gpair>& gpair = *in_gpair;
std::vector<std::vector<std::unique_ptr<RegTree> > > new_trees;
if (mparam.num_output_group == 1) {
std::vector<std::unique_ptr<RegTree> > ret;
BoostNewTrees(gpair, p_fmat, buffer_offset, 0, &ret);
new_trees.push_back(std::move(ret));
} else {
const int ngroup = mparam.num_output_group;
CHECK_EQ(gpair.size() % ngroup, 0)
<< "must have exactly ngroup*nrow gpairs";
std::vector<bst_gpair> tmp(gpair.size() / ngroup);
for (int gid = 0; gid < ngroup; ++gid) {
bst_omp_uint nsize = static_cast<bst_omp_uint>(tmp.size());
#pragma omp parallel for schedule(static)
for (bst_omp_uint i = 0; i < nsize; ++i) {
tmp[i] = gpair[i * ngroup + gid];
}
std::vector<std::unique_ptr<RegTree> > ret;
BoostNewTrees(tmp, p_fmat, buffer_offset, gid, &ret);
new_trees.push_back(std::move(ret));
}
}
for (int gid = 0; gid < mparam.num_output_group; ++gid) {
this->CommitModel(std::move(new_trees[gid]), gid);
}
}
void Predict(DMatrix* p_fmat,
int64_t buffer_offset,
std::vector<float>* out_preds,
unsigned ntree_limit) override {
const MetaInfo& info = p_fmat->info();
int nthread;
#pragma omp parallel
{
nthread = omp_get_num_threads();
}
InitThreadTemp(nthread);
std::vector<float> &preds = *out_preds;
const size_t stride = p_fmat->info().num_row * mparam.num_output_group;
preds.resize(stride * (mparam.size_leaf_vector+1));
// start collecting the prediction
dmlc::DataIter<RowBatch>* iter = p_fmat->RowIterator();
iter->BeforeFirst();
while (iter->Next()) {
const RowBatch &batch = iter->Value();
// parallel over local batch
const bst_omp_uint nsize = static_cast<bst_omp_uint>(batch.size);
#pragma omp parallel for schedule(static)
for (bst_omp_uint i = 0; i < nsize; ++i) {
const int tid = omp_get_thread_num();
RegTree::FVec &feats = thread_temp[tid];
int64_t ridx = static_cast<int64_t>(batch.base_rowid + i);
CHECK_LT(static_cast<size_t>(ridx), info.num_row);
// loop over output groups
for (int gid = 0; gid < mparam.num_output_group; ++gid) {
this->Pred(batch[i],
buffer_offset < 0 ? -1 : buffer_offset + ridx,
gid, info.GetRoot(ridx), &feats,
&preds[ridx * mparam.num_output_group + gid], stride,
ntree_limit);
}
}
}
}
void Predict(const SparseBatch::Inst& inst,
std::vector<float>* out_preds,
unsigned ntree_limit,
unsigned root_index) override {
if (thread_temp.size() == 0) {
thread_temp.resize(1, RegTree::FVec());
thread_temp[0].Init(mparam.num_feature);
}
out_preds->resize(mparam.num_output_group * (mparam.size_leaf_vector+1));
// loop over output groups
for (int gid = 0; gid < mparam.num_output_group; ++gid) {
this->Pred(inst, -1, gid, root_index, &thread_temp[0],
&(*out_preds)[gid], mparam.num_output_group,
ntree_limit);
}
}
void PredictLeaf(DMatrix* p_fmat,
std::vector<float>* out_preds,
unsigned ntree_limit) override {
int nthread;
#pragma omp parallel
{
nthread = omp_get_num_threads();
}
InitThreadTemp(nthread);
this->PredPath(p_fmat, out_preds, ntree_limit);
}
std::vector<std::string> Dump2Text(const FeatureMap& fmap, int option) const override {
std::vector<std::string> dump;
for (size_t i = 0; i < trees.size(); i++) {
dump.push_back(trees[i]->Dump2Text(fmap, option & 1));
}
return dump;
}
protected:
// initialize updater before using them
inline void InitUpdater() {
if (updaters.size() != 0) return;
std::string tval = tparam.updater_seq;
std::vector<std::string> ups = common::Split(tval, ',');
for (const std::string& pstr : ups) {
std::unique_ptr<TreeUpdater> up(TreeUpdater::Create(pstr.c_str()));
up->Init(this->cfg);
updaters.push_back(std::move(up));
}
}
// do group specific group
inline void
BoostNewTrees(const std::vector<bst_gpair> &gpair,
DMatrix *p_fmat,
int64_t buffer_offset,
int bst_group,
std::vector<std::unique_ptr<RegTree> >* ret) {
this->InitUpdater();
std::vector<RegTree*> new_trees;
ret->clear();
// create the trees
for (int i = 0; i < tparam.num_parallel_tree; ++i) {
std::unique_ptr<RegTree> ptr(new RegTree());
ptr->param.InitAllowUnknown(this->cfg);
ptr->InitModel();
new_trees.push_back(ptr.get());
ret->push_back(std::move(ptr));
}
// update the trees
for (auto& up : updaters) {
up->Update(gpair, p_fmat, new_trees);
}
// optimization, update buffer, if possible
// this is only under distributed column mode
// for safety check of lazy checkpoint
if (buffer_offset >= 0 &&
new_trees.size() == 1 && updaters.size() > 0 &&
updaters.back()->GetLeafPosition() != nullptr) {
CHECK_EQ(p_fmat->info().num_row, p_fmat->buffered_rowset().size());
this->UpdateBufferByPosition(p_fmat,
buffer_offset,
bst_group,
*new_trees[0],
updaters.back()->GetLeafPosition());
}
}
// commit new trees all at once
virtual void
CommitModel(std::vector<std::unique_ptr<RegTree> >&& new_trees,
int bst_group) {
for (size_t i = 0; i < new_trees.size(); ++i) {
trees.push_back(std::move(new_trees[i]));
tree_info.push_back(bst_group);
}
mparam.num_trees += static_cast<int>(new_trees.size());
}
// update buffer by pre-cached position
inline void UpdateBufferByPosition(DMatrix *p_fmat,
int64_t buffer_offset,
int bst_group,
const RegTree &new_tree,
const int* leaf_position) {
const RowSet& rowset = p_fmat->buffered_rowset();
const bst_omp_uint ndata = static_cast<bst_omp_uint>(rowset.size());
#pragma omp parallel for schedule(static)
for (bst_omp_uint i = 0; i < ndata; ++i) {
const bst_uint ridx = rowset[i];
const int64_t bid = this->BufferOffset(buffer_offset + ridx, bst_group);
const int tid = leaf_position[ridx];
CHECK_EQ(pred_counter[bid], trees.size());
CHECK_GE(tid, 0);
pred_buffer[bid] += new_tree[tid].leaf_value();
for (int i = 0; i < mparam.size_leaf_vector; ++i) {
pred_buffer[bid + i + 1] += new_tree.leafvec(tid)[i];
}
pred_counter[bid] += tparam.num_parallel_tree;
}
}
// make a prediction for a single instance
inline void Pred(const RowBatch::Inst &inst,
int64_t buffer_index,
int bst_group,
unsigned root_index,
RegTree::FVec *p_feats,
float *out_pred,
size_t stride,
unsigned ntree_limit) {
size_t itop = 0;
float psum = 0.0f;
// sum of leaf vector
std::vector<float> vec_psum(mparam.size_leaf_vector, 0.0f);
const int64_t bid = this->BufferOffset(buffer_index, bst_group);
// number of valid trees
unsigned treeleft = ntree_limit == 0 ? std::numeric_limits<unsigned>::max() : ntree_limit;
// load buffered results if any
if (bid >= 0 && ntree_limit == 0) {
itop = pred_counter[bid];
psum = pred_buffer[bid];
for (int i = 0; i < mparam.size_leaf_vector; ++i) {
vec_psum[i] = pred_buffer[bid + i + 1];
}
}
if (itop != trees.size()) {
p_feats->Fill(inst);
for (size_t i = itop; i < trees.size(); ++i) {
if (tree_info[i] == bst_group) {
int tid = trees[i]->GetLeafIndex(*p_feats, root_index);
psum += (*trees[i])[tid].leaf_value();
for (int j = 0; j < mparam.size_leaf_vector; ++j) {
vec_psum[j] += trees[i]->leafvec(tid)[j];
}
if (--treeleft == 0) break;
}
}
p_feats->Drop(inst);
}
// updated the buffered results
if (bid >= 0 && ntree_limit == 0) {
pred_counter[bid] = static_cast<unsigned>(trees.size());
pred_buffer[bid] = psum;
for (int i = 0; i < mparam.size_leaf_vector; ++i) {
pred_buffer[bid + i + 1] = vec_psum[i];
}
}
out_pred[0] = psum;
for (int i = 0; i < mparam.size_leaf_vector; ++i) {
out_pred[stride * (i + 1)] = vec_psum[i];
}
}
// predict independent leaf index
inline void PredPath(DMatrix *p_fmat,
std::vector<float> *out_preds,
unsigned ntree_limit) {
const MetaInfo& info = p_fmat->info();
// number of valid trees
if (ntree_limit == 0 || ntree_limit > trees.size()) {
ntree_limit = static_cast<unsigned>(trees.size());
}
std::vector<float>& preds = *out_preds;
preds.resize(info.num_row * ntree_limit);
// start collecting the prediction
dmlc::DataIter<RowBatch>* iter = p_fmat->RowIterator();
iter->BeforeFirst();
while (iter->Next()) {
const RowBatch& batch = iter->Value();
// parallel over local batch
const bst_omp_uint nsize = static_cast<bst_omp_uint>(batch.size);
#pragma omp parallel for schedule(static)
for (bst_omp_uint i = 0; i < nsize; ++i) {
const int tid = omp_get_thread_num();
size_t ridx = static_cast<size_t>(batch.base_rowid + i);
RegTree::FVec &feats = thread_temp[tid];
feats.Fill(batch[i]);
for (unsigned j = 0; j < ntree_limit; ++j) {
int tid = trees[j]->GetLeafIndex(feats, info.GetRoot(ridx));
preds[ridx * ntree_limit + j] = static_cast<float>(tid);
}
feats.Drop(batch[i]);
}
}
}
// init thread buffers
inline void InitThreadTemp(int nthread) {
int prev_thread_temp_size = thread_temp.size();
if (prev_thread_temp_size < nthread) {
thread_temp.resize(nthread, RegTree::FVec());
for (int i = prev_thread_temp_size; i < nthread; ++i) {
thread_temp[i].Init(mparam.num_feature);
}
}
}
/*! \return size of prediction buffer actually needed */
inline size_t PredBufferSize() const {
return mparam.num_output_group * num_pbuffer * (mparam.size_leaf_vector + 1);
}
/*!
* \brief get the buffer offset given a buffer index and group id
* \return calculated buffer offset
*/
inline int64_t BufferOffset(int64_t buffer_index, int bst_group) const {
if (buffer_index < 0) return -1;
size_t bidx = static_cast<size_t>(buffer_index);
CHECK_LT(bidx, num_pbuffer);
return (bidx + num_pbuffer * bst_group) * (mparam.size_leaf_vector + 1);
}
// --- data structure ---
// training parameter
GBTreeTrainParam tparam;
// model parameter
GBTreeModelParam mparam;
/*! \brief vector of trees stored in the model */
std::vector<std::unique_ptr<RegTree> > trees;
/*! \brief some information indicator of the tree, reserved */
std::vector<int> tree_info;
/*! \brief predict buffer size */
size_t num_pbuffer;
/*! \brief prediction buffer */
std::vector<float> pred_buffer;
/*! \brief prediction buffer counter, remember the prediction */
std::vector<unsigned> pred_counter;
// ----training fields----
// configurations for tree
std::vector<std::pair<std::string, std::string> > cfg;
// temporal storage for per thread
std::vector<RegTree::FVec> thread_temp;
// the updaters that can be applied to each of tree
std::vector<std::unique_ptr<TreeUpdater> > updaters;
};
// dart
class Dart : public GBTree {
public:
Dart() {}
void Configure(const std::vector<std::pair<std::string, std::string> >& cfg) override {
GBTree::Configure(cfg);
if (trees.size() == 0) {
dparam.InitAllowUnknown(cfg);
}
}
void Load(dmlc::Stream* fi) override {
GBTree::Load(fi);
weight_drop.resize(mparam.num_trees);
if (mparam.num_trees != 0) {
fi->Read(&weight_drop);
}
}
void Save(dmlc::Stream* fo) const override {
GBTree::Save(fo);
if (weight_drop.size() != 0) {
fo->Write(weight_drop);
}
}
// predict the leaf scores with dropout if ntree_limit = 0
void Predict(DMatrix* p_fmat,
int64_t buffer_offset,
std::vector<float>* out_preds,
unsigned ntree_limit) override {
DropTrees(ntree_limit);
const MetaInfo& info = p_fmat->info();
int nthread;
#pragma omp parallel
{
nthread = omp_get_num_threads();
}
InitThreadTemp(nthread);
std::vector<float> &preds = *out_preds;
const size_t stride = p_fmat->info().num_row * mparam.num_output_group;
preds.resize(stride * (mparam.size_leaf_vector+1));
// start collecting the prediction
dmlc::DataIter<RowBatch>* iter = p_fmat->RowIterator();
iter->BeforeFirst();
while (iter->Next()) {
const RowBatch &batch = iter->Value();
// parallel over local batch
const bst_omp_uint nsize = static_cast<bst_omp_uint>(batch.size);
#pragma omp parallel for schedule(static)
for (bst_omp_uint i = 0; i < nsize; ++i) {
const int tid = omp_get_thread_num();
RegTree::FVec &feats = thread_temp[tid];
int64_t ridx = static_cast<int64_t>(batch.base_rowid + i);
CHECK_LT(static_cast<size_t>(ridx), info.num_row);
// loop over output groups
for (int gid = 0; gid < mparam.num_output_group; ++gid) {
this->Pred(batch[i],
buffer_offset < 0 ? -1 : buffer_offset + ridx,
gid, info.GetRoot(ridx), &feats,
&preds[ridx * mparam.num_output_group + gid], stride,
ntree_limit);
}
}
}
}
void Predict(const SparseBatch::Inst& inst,
std::vector<float>* out_preds,
unsigned ntree_limit,
unsigned root_index) override {
DropTrees(1);
if (thread_temp.size() == 0) {
thread_temp.resize(1, RegTree::FVec());
thread_temp[0].Init(mparam.num_feature);
}
out_preds->resize(mparam.num_output_group * (mparam.size_leaf_vector+1));
// loop over output groups
for (int gid = 0; gid < mparam.num_output_group; ++gid) {
this->Pred(inst, -1, gid, root_index, &thread_temp[0],
&(*out_preds)[gid], mparam.num_output_group,
ntree_limit);
}
}
protected:
// commit new trees all at once
virtual void
CommitModel(std::vector<std::unique_ptr<RegTree> >&& new_trees,
int bst_group) {
for (size_t i = 0; i < new_trees.size(); ++i) {
trees.push_back(std::move(new_trees[i]));
tree_info.push_back(bst_group);
}
mparam.num_trees += static_cast<int>(new_trees.size());
size_t num_drop = NormalizeTrees(new_trees.size());
if (dparam.silent != 1) {
LOG(INFO) << "drop " << num_drop << " trees, "
<< "weight = " << weight_drop.back();
}
}
// predict the leaf scores without dropped trees
inline void Pred(const RowBatch::Inst &inst,
int64_t buffer_index,
int bst_group,
unsigned root_index,
RegTree::FVec *p_feats,
float *out_pred,
size_t stride,
unsigned ntree_limit) {
float psum = 0.0f;
// sum of leaf vector
std::vector<float> vec_psum(mparam.size_leaf_vector, 0.0f);
const int64_t bid = this->BufferOffset(buffer_index, bst_group);
p_feats->Fill(inst);
for (size_t i = 0; i < trees.size(); ++i) {
if (tree_info[i] == bst_group) {
bool drop = (std::find(idx_drop.begin(), idx_drop.end(), i) != idx_drop.end());
if (!drop) {
int tid = trees[i]->GetLeafIndex(*p_feats, root_index);
psum += weight_drop[i] * (*trees[i])[tid].leaf_value();
for (int j = 0; j < mparam.size_leaf_vector; ++j) {
vec_psum[j] += weight_drop[i] * trees[i]->leafvec(tid)[j];
}
}
}
}
p_feats->Drop(inst);
// updated the buffered results
if (bid >= 0 && ntree_limit == 0) {
pred_counter[bid] = static_cast<unsigned>(trees.size());
pred_buffer[bid] = psum;
for (int i = 0; i < mparam.size_leaf_vector; ++i) {
pred_buffer[bid + i + 1] = vec_psum[i];
}
}
out_pred[0] = psum;
for (int i = 0; i < mparam.size_leaf_vector; ++i) {
out_pred[stride * (i + 1)] = vec_psum[i];
}
}
// select dropped trees
inline void DropTrees(unsigned ntree_limit_drop) {
std::uniform_real_distribution<> runif(0.0, 1.0);
auto& rnd = common::GlobalRandom();
// reset
idx_drop.clear();
// sample dropped trees
bool skip = false;
if (dparam.skip_drop > 0.0) skip = (runif(rnd) < dparam.skip_drop);
if (ntree_limit_drop == 0 && !skip) {
if (dparam.sample_type == 1) {
float sum_weight = 0.0;
for (size_t i = 0; i < weight_drop.size(); ++i) {
sum_weight += weight_drop[i];
}
for (size_t i = 0; i < weight_drop.size(); ++i) {
if (runif(rnd) < dparam.rate_drop * weight_drop.size() * weight_drop[i] / sum_weight) {
idx_drop.push_back(i);
}
}
} else {
for (size_t i = 0; i < weight_drop.size(); ++i) {
if (runif(rnd) < dparam.rate_drop) {
idx_drop.push_back(i);
}
}
}
}
}
// set normalization factors
inline size_t NormalizeTrees(size_t size_new_trees) {
float lr = 1.0 * dparam.learning_rate / size_new_trees;
size_t num_drop = idx_drop.size();
if (num_drop == 0) {
for (size_t i = 0; i < size_new_trees; ++i) {
weight_drop.push_back(1.0);
}
} else {
if (dparam.normalize_type == 1) {
// normalize_type 1
float factor = 1.0 / (1.0 + lr);
for (size_t i = 0; i < idx_drop.size(); ++i) {
weight_drop[i] *= factor;
}
for (size_t i = 0; i < size_new_trees; ++i) {
weight_drop.push_back(factor);
}
} else {
// normalize_type 0
float factor = 1.0 * num_drop / (num_drop + lr);
for (size_t i = 0; i < idx_drop.size(); ++i) {
weight_drop[i] *= factor;
}
for (size_t i = 0; i < size_new_trees; ++i) {
weight_drop.push_back(1.0 / (num_drop + lr));
}
}
}
// reset
idx_drop.clear();
return num_drop;
}
// --- data structure ---
// training parameter
DartTrainParam dparam;
/*! \brief prediction buffer */
std::vector<float> weight_drop;
// indexes of dropped trees
std::vector<size_t> idx_drop;
};
// register the ojective functions
DMLC_REGISTER_PARAMETER(GBTreeModelParam);
DMLC_REGISTER_PARAMETER(GBTreeTrainParam);
DMLC_REGISTER_PARAMETER(DartTrainParam);
XGBOOST_REGISTER_GBM(GBTree, "gbtree")
.describe("Tree booster, gradient boosted trees.")
.set_body([]() {
return new GBTree();
});
XGBOOST_REGISTER_GBM(Dart, "dart")
.describe("Tree booster, dart.")
.set_body([]() {
return new Dart();
});
} // namespace gbm
} // namespace xgboost