Serving AI/ML models in the open standard formats PMML and ONNX with both HTTP and gRPC endpoints.
- Features
- Prerequisites
- Installation
- PMML
- ONNX
- REST APIs
- gRPC APIs
- Examples
- Deploy and Manage AI/ML models at scale
- Support
- License
AI Serving is a flexible, high-performance inferencing system for machine learning and deep learning models, designed for production environments. AI Serving provides out-of-the-box integration with PMML and ONNX models, but can be easily extended to serve other formats of models. The next candidate format could be PFA.
- Java >= 1.8
The easiest and most straight-forward way of using AI-Serving is with Docker images.
The sbt
build system is required.
cd REPO_ROOT
sbt assembly
An assembly jar will be generated:
$REPO_ROOT/target/scala-2.13/ai-serving-assembly-<version>.jar
Simply run:
java -jar ai-serving-assembly-<version>.jar
By default, the HTTP endpoint is listening on http://0.0.0.0:9090/
, and the gRPC port is 9091
. You can customize those options that are defined in the application.conf
. There are several ways to override the default options, one is to create a new config file based on the default one, then:
java -Dconfig.file=/path/to/config-file -jar ai-serving-assembly-<version>.jar
Another is to override each by setting Java system property, for example:
java -Dservice.http.port=9000 -Dservice.grpc.port=9001 -Dservice.home="/path/to/writable-directory" -jar ai-serving-assembly-<version>.jar
AI-Serving is designed to be persistent or recoverable, so it needs a place to save all served models, that is specified by the property service.home
that takes /opt/ai-serving
as default, and the directory must be writable.
AI-Serving supports PMML natively, while ONNX needs further ONNX Runtime Configuration.
Integrates PMML4S to score PMML models. PMML4S is a lightweight, clean and efficient implementation based on the PMML specification from 2.0 through to the latest 4.4.
PMML4S is written in pure Scala that running in JVM, AI-Serving needs no special configuration to support PMML models.
Leverages ONNX Runtime to make predictions for ONNX models. ONNX Runtime is a performance-focused inference engine for ONNX models.
ONNX Runtime is implemented in C/C++, and AI-Serving calls ONNX Runtime Java API to support ONNX models, it needs more configurations to work with ONNX. If you want just to deploy PMML models, please ignore the current step.
You need to build both native libraries JNI shared library
and onnxruntime shared library
for your OS/Architecture:
Please, refer to the onnxtime build instructions, and the --build_java
option always must be specified.
Load the native libraries when running AI-Serving. Please, see Build Output lists all generated outputs.
The ONNX Runtime jar onnxruntime-<version-number>.jar
has not been published into Maven distribution, in order to not break down the build, AI-Serving contains the latest version in $REPO_ROOT/lib
. This jar contains just classes, so it's cross-platform.
There are several different ways to load both native libraries:
-
Put both
onnxruntime-<version-number>-jni.jar
andonnxruntime-<version-number>-lib.jar
into$REPO_ROOT/lib
, then regenerate the assembly jar to harvest both. That is probably the easiest way. -
Explicitly specify the path to the shared library:
java -Donnxruntime.native.onnxruntime4j_jni.path=/path/to/onnxruntime4j_jni -Donnxruntime.native.onnxruntime.path=/path/to/onnxruntime -jar ai-serving-assembly-<version>.jar
-
Load from library path:
java -Djava.library.path=/path/to/native_libraries -jar ai-serving-assembly-<version>.jar
When an error occurs, all APIs will return a JSON object as follows:
{
"error": <an error message string>
}
PUT http://host:port/v1/validate
Model with Content-Type
that tells the server which format to handle:
Content-Type: application/xml
, orContent-Type: text/xml
, the input is treated as a PMML model.Content-Type: application/octet-stream
,application/vnd.google.protobuf
orapplication/x-protobuf
, the input is processed as an ONNX model.
If no Content-Type
specified, the server can probe the content type from the input entity, but it could fail.
Model metadata includes the model type, predictor list, output list, and so on.
{
"type": <model_type>
"predictors": [
{
"name": <predictor_name1>,
"type": <field_type>,
...
},
{
"name": <predictor_name2>,
"type": <field_type>,
...
},
...
],
"outputs": [
{
"name": <output_name1>,
"type": <field_type>,
...
},
{
"name": <output_name2>,
"type": <field_type>,
...
},
...
],
...
}
PUT http://host:port/v1/models/${MODEL_NAME}
Model with Content-Type
, see validation request above for details.
{
// The specified servable name
"name": <model_name>
// The deployed version starts from 1
"version": <model_version>
}
DELETE http://host:port/v1/models/${MODEL_NAME}
204 No Content
GET http://host:port/v1/models[/${MODEL_NAME}[/versions/${MODEL_VERSION}]]
- If
/${MODEL_NAME}/versions/${MODEL_VERSION}
is missing, all models are returned. - If
/versions/${MODEL_VERSION}
is missing, all versions of the specified model are returned. - Otherwise, only the specified version and model is returnd.
// All models are returned from GET http://host:port/v1/models
[
{
"name": <model_name1>,
"versions": [
{
"version": 1,
...
},
{
"version": 2,
...
},
...
]
},
{
"name": <model_name2>,
"versions": [
{
"version": 1,
...
},
{
"version": 2,
...
},
...
]
},
...
]
// All versions of the specified model are returned from GET http://host:port/v1/models/${MODEL_NAME}
{
"name": <model_name>,
"versions": [
{
"version": 1,
...
},
{
"version": 2,
...
},
...
]
}
// The specified version and model is returned from http://host:port/v1/models/${MODEL_NAME}/versions/${MODEL_VERSION}
{
"name": <model_name>,
"versions": [
{
"version": <model_version>,
...
}
]
}
POST http://host:port/v1/models/${MODEL_NAME}[/versions/${MODEL_VERSION}]
/versions/${MODEL_VERSION} is optional. If omitted the latest version is used.
The request body could have two formats: JSON and binary, the HTTP header Content-Type
tells the server which format to handle and thus it is required for all requests.
-
Content-Type: application/json
. The request body must be a JSON object formatted as follows:{ "X": { "records": [ { "predictor_name1": <value>|<(nested)list>, "predictor_name2": <value>|<(nested)list>, ... }, { "predictor_name1": <value>|<(nested)list>, "predictor_name2": <value>|<(nested)list>, ... }, ... ], "columns": [ "predictor_name1", "predictor_name2", ... ], "data": [ [ <value>|<(nested)list>, <value>|<(nested)list>, ... ], [ <value>|<(nested)list>, <value>|<(nested)list>, ... ], ... ] }, // Output filters to specify which output fields need to be returned. // If the list is empty, all outputs will be included. "filter": <list> }
The
X
can take more than one records, as you see above, there are two formats supported. You could use any one, usually thesplit
format is smaller for multiple records.records
: list like [{column -> value}, … , {column -> value}]split
: dict like {columns -> [columns], data -> [values]}
-
Content-Type: application/octet-stream
,application/vnd.google.protobuf
orapplication/x-protobuf
.The request body must be the protobuf message
PredictRequest
of gRPC API, besides of those common scalar values, it can use the standardonnx.TensorProto
value directly. -
Otherwise, an error will be returned.
The server always return the same type as your request.
- For the JSON format. The response body is a JSON object formatted as follows:
{
"result": {
"records": [
{
"output_name1": <value>|<(nested)list>,
"output_name2": <value>|<(nested)list>,
...
},
{
"output_name1": <value>|<(nested)list>,
"output_name2": <value>|<(nested)list>,
...
},
...
],
"columns": [ "output_name1", "output_name2", ... ],
"data": [
[ <value>|<(nested)list>, <value>|<(nested)list>, ... ],
[ <value>|<(nested)list>, <value>|<(nested)list>, ... ],
...
]
}
}
- For the binary format. The response body is the protobuf message
PredictResponse
of gRPC API.
Generally speaking, the binary payload has better latency, especially for the big tensor value for ONNX models, while the JSON format is easy for human readability.
Please, refer to the protobuf file ai-serving.proto
for details. You could generate your client and make a gRPC call to it using your favorite language. To learn more about how to generate the client code and call to the server, please refer to the tutorials of gRPC.
We will use Docker to run the AI-Serving:
docker pull autodeployai/ai-serving:latest
docker run --rm -it -v /opt/ai-serving:/opt/ai-serving -p 9090:9090 -p 9091:9091 autodeployai/ai-serving:latest
16:06:47.722 INFO AI-Serving-akka.actor.default-dispatcher-5 akka.event.slf4j.Slf4jLogger Slf4jLogger started
16:06:47.833 INFO main ai.autodeploy.serving.AIServer$ Predicting thread pool size: 16
16:06:48.305 INFO main a.autodeploy.serving.protobuf.GrpcServer AI-Serving grpc server started, listening on 9091
16:06:49.433 INFO main ai.autodeploy.serving.AIServer$ AI-Serving http server started, listening on http://0.0.0.0:9090/
In a different terminal, run cd $REPO_ROOT/src/test/resources
, use the curl
tool to make REST API calls.
We will use the Iris
decision tree model single_iris_dectree.xml to see REST APIs in action.
curl -X PUT --data-binary @single_iris_dectree.xml -H "Content-Type: application/xml" http://localhost:9090/v1/validate
{
"algorithm": "TreeModel",
"app": "KNIME",
"appVersion": "2.8.0",
"copyright": "KNIME",
"formatVersion": "4.1",
"functionName": "classification",
"outputs": [
{
"name": "predicted_class",
"optype": "nominal",
"type": "string"
},
{
"name": "probability",
"optype": "continuous",
"type": "real"
},
{
"name": "probability_Iris-setosa",
"optype": "continuous",
"type": "real"
},
{
"name": "probability_Iris-versicolor",
"optype": "continuous",
"type": "real"
},
{
"name": "probability_Iris-virginica",
"optype": "continuous",
"type": "real"
},
{
"name": "node_id",
"optype": "nominal",
"type": "string"
}
],
"predictors": [
{
"name": "sepal_length",
"optype": "continuous",
"type": "double",
"values": "[4.3,7.9]"
},
{
"name": "sepal_width",
"optype": "continuous",
"type": "double",
"values": "[2.0,4.4]"
},
{
"name": "petal_length",
"optype": "continuous",
"type": "double",
"values": "[1.0,6.9]"
},
{
"name": "petal_width",
"optype": "continuous",
"type": "double",
"values": "[0.1,2.5]"
}
],
"runtime": "PMML4S",
"serialization": "pmml",
"targets": [
{
"name": "class",
"optype": "nominal",
"type": "string",
"values": "Iris-setosa,Iris-versicolor,Iris-virginica"
}
],
"type": "PMML"
}
curl -X PUT --data-binary @single_iris_dectree.xml -H "Content-Type: application/xml" http://localhost:9090/v1/models/iris
{
"name": "iris",
"version": 1
}
curl -X GET http://localhost:9090/v1/models/iris
{
"createdAt": "2020-04-23T06:29:32",
"id": "56fa4917-e904-4364-9c15-4c87d84ec2c4",
"latestVersion": 1,
"name": "iris",
"updateAt": "2020-04-23T06:29:32",
"versions": [
{
"algorithm": "TreeModel",
"app": "KNIME",
"appVersion": "2.8.0",
"copyright": "KNIME",
"createdAt": "2020-04-23T06:29:32",
"formatVersion": "4.1",
"functionName": "classification",
"hash": "fc44c33123836be368d3f24829360020",
"outputs": [
{
"name": "predicted_class",
"optype": "nominal",
"type": "string"
},
{
"name": "probability",
"optype": "continuous",
"type": "real"
},
{
"name": "probability_Iris-setosa",
"optype": "continuous",
"type": "real"
},
{
"name": "probability_Iris-versicolor",
"optype": "continuous",
"type": "real"
},
{
"name": "probability_Iris-virginica",
"optype": "continuous",
"type": "real"
},
{
"name": "node_id",
"optype": "nominal",
"type": "string"
}
],
"predictors": [
{
"name": "sepal_length",
"optype": "continuous",
"type": "double",
"values": "[4.3,7.9]"
},
{
"name": "sepal_width",
"optype": "continuous",
"type": "double",
"values": "[2.0,4.4]"
},
{
"name": "petal_length",
"optype": "continuous",
"type": "double",
"values": "[1.0,6.9]"
},
{
"name": "petal_width",
"optype": "continuous",
"type": "double",
"values": "[0.1,2.5]"
}
],
"runtime": "PMML4S",
"serialization": "pmml",
"size": 3497,
"targets": [
{
"name": "class",
"optype": "nominal",
"type": "string",
"values": "Iris-setosa,Iris-versicolor,Iris-virginica"
}
],
"type": "PMML",
"version": 1
}
]
}
curl -X POST -d '{"X": [{"sepal_length": 5.1, "sepal_width": 3.5, "petal_length": 1.4, "petal_width": 0.2}]}' -H "Content-Type: application/json" http://localhost:9090/v1/models/iris
{
"result": [
{
"node_id": "1",
"probability_Iris-setosa": 1.0,
"predicted_class": "Iris-setosa",
"probability_Iris-virginica": 0.0,
"probability_Iris-versicolor": 0.0,
"probability": 1.0
}
]
}
curl -X POST -d '{"X": {"columns": ["sepal_length", "sepal_width", "petal_length", "petal_width"],"data":[[5.1, 3.5, 1.4, 0.2], [7, 3.2, 4.7, 1.4]]}, "filter": ["predicted_class"]}' -H "Content-Type: application/json" http://localhost:9090/v1/models/iris
{
"result": {
"columns": [
"predicted_class"
],
"data": [
[
"Iris-setosa"
],
[
"Iris-versicolor"
]
]
}
}
We will use the pre-trained MNIST Handwritten Digit Recognition ONNX Model to see REST APIs in action.
curl -X PUT --data-binary @mnist.onnx -H "Content-Type: application/octet-stream" http://localhost:9090/v1/validate
{
"outputs": [
{
"name": "Plus214_Output_0",
"shape": [
1,
10
],
"type": "tensor(float)"
}
],
"predictors": [
{
"name": "Input3",
"shape": [
1,
1,
28,
28
],
"type": "tensor(float)"
}
],
"runtime": "ONNX Runtime",
"serialization": "onnx",
"type": "ONNX"
}
curl -X PUT --data-binary @mnist.onnx -H "Content-Type: application/octet-stream" http://localhost:9090/v1/models/mnist
{
"name": "mnist",
"version": 1
}
curl -X GET http://localhost:9090/v1/models/mnist
{
"createdAt": "2020-04-16T15:18:18",
"id": "850bf345-5c4c-4312-96c8-6ee715113961",
"latestVersion": 1,
"name": "mnist",
"updateAt": "2020-04-16T15:18:18",
"versions": [
{
"createdAt": "2020-04-16T15:18:18",
"hash": "104617a683b4e62469478e07e1518aaa",
"outputs": [
{
"name": "Plus214_Output_0",
"shape": [
1,
10
],
"type": "tensor(float)"
}
],
"predictors": [
{
"name": "Input3",
"shape": [
1,
1,
28,
28
],
"type": "tensor(float)"
}
],
"runtime": "ONNX Runtime",
"serialization": "onnx",
"size": 26454,
"type": "ONNX",
"version": 1
}
]
}
curl -X POST -d @mnist_request_0.json -H "Content-Type: application/json" http://localhost:9090/v1/models/mnist
{
"result": [
{
"Plus214_Output_0": [
[
975.6703491210938,
-618.7241821289062,
6574.5654296875,
668.0283203125,
-917.2710571289062,
-1671.6361083984375,
-1952.7598876953125,
-61.54957580566406,
-777.1764526367188,
-1439.5316162109375
]
]
}
]
}
curl -X POST --data-binary @mnist_request_0.pb -o response_0.pb -H "Content-Type: application/octet-stream" http://localhost:9090/v1/models/mnist
Save the binary response to response_0.pb
that is in the protobuf
format, an instance of PredictResponse
message, you could use the generated client from ai-serving.proto
to read it.
Note, the content type of predict
request must be specified explicitly and take one of four candidates. An incorrect request URL or body returns an HTTP error status.
curl -i -X POST -d @mnist_request_0.json http://localhost:9090/v1/models/mnist
HTTP/1.1 400 Bad Request
Server: akka-http/10.1.11
Date: Sun, 19 Apr 2020 06:25:25 GMT
Connection: close
Content-Type: application/json
Content-Length: 92
{"error":"Prediction request takes unknown content type: application/x-www-form-urlencoded"}
See the DaaS system that deploys AI/ML models in production at scale on Kubernetes.
If you have any questions about the AI-Serving library, please open issues on this repository.
Feedback and contributions to the project, no matter what kind, are always very welcome.
AI-Serving is licensed under APL 2.0.