forked from real-stanford/diffusion_policy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
conditional_unet1d.py
242 lines (212 loc) · 8.74 KB
/
conditional_unet1d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
from typing import Union
import logging
import torch
import torch.nn as nn
import einops
from einops.layers.torch import Rearrange
from diffusion_policy.model.diffusion.conv1d_components import (
Downsample1d, Upsample1d, Conv1dBlock)
from diffusion_policy.model.diffusion.positional_embedding import SinusoidalPosEmb
logger = logging.getLogger(__name__)
class ConditionalResidualBlock1D(nn.Module):
def __init__(self,
in_channels,
out_channels,
cond_dim,
kernel_size=3,
n_groups=8,
cond_predict_scale=False):
super().__init__()
self.blocks = nn.ModuleList([
Conv1dBlock(in_channels, out_channels, kernel_size, n_groups=n_groups),
Conv1dBlock(out_channels, out_channels, kernel_size, n_groups=n_groups),
])
# FiLM modulation https://arxiv.org/abs/1709.07871
# predicts per-channel scale and bias
cond_channels = out_channels
if cond_predict_scale:
cond_channels = out_channels * 2
self.cond_predict_scale = cond_predict_scale
self.out_channels = out_channels
self.cond_encoder = nn.Sequential(
nn.Mish(),
nn.Linear(cond_dim, cond_channels),
Rearrange('batch t -> batch t 1'),
)
# make sure dimensions compatible
self.residual_conv = nn.Conv1d(in_channels, out_channels, 1) \
if in_channels != out_channels else nn.Identity()
def forward(self, x, cond):
'''
x : [ batch_size x in_channels x horizon ]
cond : [ batch_size x cond_dim]
returns:
out : [ batch_size x out_channels x horizon ]
'''
out = self.blocks[0](x)
embed = self.cond_encoder(cond)
if self.cond_predict_scale:
embed = embed.reshape(
embed.shape[0], 2, self.out_channels, 1)
scale = embed[:,0,...]
bias = embed[:,1,...]
out = scale * out + bias
else:
out = out + embed
out = self.blocks[1](out)
out = out + self.residual_conv(x)
return out
class ConditionalUnet1D(nn.Module):
def __init__(self,
input_dim,
local_cond_dim=None,
global_cond_dim=None,
diffusion_step_embed_dim=256,
down_dims=[256,512,1024],
kernel_size=3,
n_groups=8,
cond_predict_scale=False
):
super().__init__()
all_dims = [input_dim] + list(down_dims)
start_dim = down_dims[0]
dsed = diffusion_step_embed_dim
diffusion_step_encoder = nn.Sequential(
SinusoidalPosEmb(dsed),
nn.Linear(dsed, dsed * 4),
nn.Mish(),
nn.Linear(dsed * 4, dsed),
)
cond_dim = dsed
if global_cond_dim is not None:
cond_dim += global_cond_dim
in_out = list(zip(all_dims[:-1], all_dims[1:]))
local_cond_encoder = None
if local_cond_dim is not None:
_, dim_out = in_out[0]
dim_in = local_cond_dim
local_cond_encoder = nn.ModuleList([
# down encoder
ConditionalResidualBlock1D(
dim_in, dim_out, cond_dim=cond_dim,
kernel_size=kernel_size, n_groups=n_groups,
cond_predict_scale=cond_predict_scale),
# up encoder
ConditionalResidualBlock1D(
dim_in, dim_out, cond_dim=cond_dim,
kernel_size=kernel_size, n_groups=n_groups,
cond_predict_scale=cond_predict_scale)
])
mid_dim = all_dims[-1]
self.mid_modules = nn.ModuleList([
ConditionalResidualBlock1D(
mid_dim, mid_dim, cond_dim=cond_dim,
kernel_size=kernel_size, n_groups=n_groups,
cond_predict_scale=cond_predict_scale
),
ConditionalResidualBlock1D(
mid_dim, mid_dim, cond_dim=cond_dim,
kernel_size=kernel_size, n_groups=n_groups,
cond_predict_scale=cond_predict_scale
),
])
down_modules = nn.ModuleList([])
for ind, (dim_in, dim_out) in enumerate(in_out):
is_last = ind >= (len(in_out) - 1)
down_modules.append(nn.ModuleList([
ConditionalResidualBlock1D(
dim_in, dim_out, cond_dim=cond_dim,
kernel_size=kernel_size, n_groups=n_groups,
cond_predict_scale=cond_predict_scale),
ConditionalResidualBlock1D(
dim_out, dim_out, cond_dim=cond_dim,
kernel_size=kernel_size, n_groups=n_groups,
cond_predict_scale=cond_predict_scale),
Downsample1d(dim_out) if not is_last else nn.Identity()
]))
up_modules = nn.ModuleList([])
for ind, (dim_in, dim_out) in enumerate(reversed(in_out[1:])):
is_last = ind >= (len(in_out) - 1)
up_modules.append(nn.ModuleList([
ConditionalResidualBlock1D(
dim_out*2, dim_in, cond_dim=cond_dim,
kernel_size=kernel_size, n_groups=n_groups,
cond_predict_scale=cond_predict_scale),
ConditionalResidualBlock1D(
dim_in, dim_in, cond_dim=cond_dim,
kernel_size=kernel_size, n_groups=n_groups,
cond_predict_scale=cond_predict_scale),
Upsample1d(dim_in) if not is_last else nn.Identity()
]))
final_conv = nn.Sequential(
Conv1dBlock(start_dim, start_dim, kernel_size=kernel_size),
nn.Conv1d(start_dim, input_dim, 1),
)
self.diffusion_step_encoder = diffusion_step_encoder
self.local_cond_encoder = local_cond_encoder
self.up_modules = up_modules
self.down_modules = down_modules
self.final_conv = final_conv
logger.info(
"number of parameters: %e", sum(p.numel() for p in self.parameters())
)
def forward(self,
sample: torch.Tensor,
timestep: Union[torch.Tensor, float, int],
local_cond=None, global_cond=None, **kwargs):
"""
x: (B,T,input_dim)
timestep: (B,) or int, diffusion step
local_cond: (B,T,local_cond_dim)
global_cond: (B,global_cond_dim)
output: (B,T,input_dim)
"""
sample = einops.rearrange(sample, 'b h t -> b t h')
# 1. time
timesteps = timestep
if not torch.is_tensor(timesteps):
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
timesteps = torch.tensor([timesteps], dtype=torch.long, device=sample.device)
elif torch.is_tensor(timesteps) and len(timesteps.shape) == 0:
timesteps = timesteps[None].to(sample.device)
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
timesteps = timesteps.expand(sample.shape[0])
global_feature = self.diffusion_step_encoder(timesteps)
if global_cond is not None:
global_feature = torch.cat([
global_feature, global_cond
], axis=-1)
# encode local features
h_local = list()
if local_cond is not None:
local_cond = einops.rearrange(local_cond, 'b h t -> b t h')
resnet, resnet2 = self.local_cond_encoder
x = resnet(local_cond, global_feature)
h_local.append(x)
x = resnet2(local_cond, global_feature)
h_local.append(x)
x = sample
h = []
for idx, (resnet, resnet2, downsample) in enumerate(self.down_modules):
x = resnet(x, global_feature)
if idx == 0 and len(h_local) > 0:
x = x + h_local[0]
x = resnet2(x, global_feature)
h.append(x)
x = downsample(x)
for mid_module in self.mid_modules:
x = mid_module(x, global_feature)
for idx, (resnet, resnet2, upsample) in enumerate(self.up_modules):
x = torch.cat((x, h.pop()), dim=1)
x = resnet(x, global_feature)
# The correct condition should be:
# if idx == (len(self.up_modules)-1) and len(h_local) > 0:
# However this change will break compatibility with published checkpoints.
# Therefore it is left as a comment.
if idx == len(self.up_modules) and len(h_local) > 0:
x = x + h_local[1]
x = resnet2(x, global_feature)
x = upsample(x)
x = self.final_conv(x)
x = einops.rearrange(x, 'b t h -> b h t')
return x