forked from dusty-nv/jetson-inference
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhomographyNet.cpp
454 lines (345 loc) · 13.8 KB
/
homographyNet.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
/*
* Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include "homographyNet.h"
#include "commandLine.h"
#include "cudaUtility.h"
#include "mat33.h"
#ifdef HAS_HOMOGRAPHY_NET
#include <opencv2/calib3d.hpp>
#endif
#define DEBUG_HOMOGRAPHY
//-------------------------------------------------------------------------------------
#ifdef HAS_HOMOGRAPHY_NET
namespace cv
{
Mat filterHomographyDecomp(InputArrayOfArrays rotations,
InputArrayOfArrays normals,
InputArray _beforeRectifiedPoints,
InputArray _afterRectifiedPoints,
InputArray _pointsMask)
{
CV_Assert(_beforeRectifiedPoints.type() == CV_32FC2 && _afterRectifiedPoints.type() == CV_32FC2 && (_pointsMask.empty() || _pointsMask.type() == CV_8U));
Mat beforeRectifiedPoints = _beforeRectifiedPoints.getMat(), afterRectifiedPoints = _afterRectifiedPoints.getMat(), pointsMask = _pointsMask.getMat();
Mat possibleSolutions;
for (int solutionIdx = 0; solutionIdx < rotations.size().area(); solutionIdx++)
{
bool solutionValid = true;
for (int pointIdx = 0; pointIdx < beforeRectifiedPoints.size().area(); pointIdx++)
{
if (pointsMask.empty() || pointsMask.at<bool>(pointIdx))
{
Mat tempAddMat = Mat(1, 1, CV_64F, double(1));
Mat tempPrevPointMat = Mat(beforeRectifiedPoints.at<Point2f>(pointIdx));
tempPrevPointMat.convertTo(tempPrevPointMat, CV_64F);
tempPrevPointMat.push_back(tempAddMat);
Mat tempCurrPointMat = Mat(afterRectifiedPoints.at<Point2f>(pointIdx));
tempCurrPointMat.convertTo(tempCurrPointMat, CV_64F);
tempCurrPointMat.push_back(tempAddMat);
double prevNormDot = tempPrevPointMat.dot(normals.getMat(solutionIdx));
double currNormDot = tempCurrPointMat.dot(rotations.getMat(solutionIdx) * normals.getMat(solutionIdx));
if (prevNormDot <= 0 || currNormDot <= 0)
{
printf("invalid solution %i (point=%i)\n", solutionIdx, pointIdx);
solutionValid = false;
break;
}
}
}
if (solutionValid)
{
possibleSolutions.push_back(solutionIdx);
}
}
return possibleSolutions;
}
}
#endif
//-------------------------------------------------------------------------------------
// constructor
homographyNet::homographyNet() : tensorNet()
{
}
// destructor
homographyNet::~homographyNet()
{
}
// NetworkTypeFromStr
homographyNet::NetworkType homographyNet::NetworkTypeFromStr( const char* modelName )
{
if( !modelName )
return homographyNet::CUSTOM;
homographyNet::NetworkType type = homographyNet::CUSTOM;
if( strcasecmp(modelName, "coco") == 0 || strcasecmp(modelName, "coco_128") == 0 || strcasecmp(modelName, "coco-128") == 0 )
type = homographyNet::COCO_128;
else if( strcasecmp(modelName, "webcam") == 0 || strcasecmp(modelName, "webcam_320") == 0 || strcasecmp(modelName, "webcam-320") == 0 )
type = homographyNet::WEBCAM_320;
else
type = homographyNet::CUSTOM;
return type;
}
// Create
homographyNet* homographyNet::Create( homographyNet::NetworkType networkType, uint32_t maxBatchSize,
precisionType precision, deviceType device, bool allowGPUFallback )
{
#ifndef HAS_HOMOGRAPHY_NET
printf(LOG_TRT "error -- homographyNet is supported only in TensorRT 5.0 and newer\n");
return NULL;
#endif
if( networkType == COCO_128 )
return Create("networks/Deep-Homography-COCO/deep_homography.onnx", HOMOGRAPHY_NET_DEFAULT_INPUT, HOMOGRAPHY_NET_DEFAULT_OUTPUT, maxBatchSize, precision, device, allowGPUFallback);
else if( networkType == WEBCAM_320 )
return Create("networks/Deep-Homography-Webcam-320/deep_homography_webcam_320.onnx", HOMOGRAPHY_NET_DEFAULT_INPUT, HOMOGRAPHY_NET_DEFAULT_OUTPUT, maxBatchSize, precision, device, allowGPUFallback);
else
return NULL;
}
// Create
homographyNet* homographyNet::Create( const char* model_path, const char* input,
const char* output, uint32_t maxBatchSize,
precisionType precision, deviceType device,
bool allowGPUFallback )
{
#ifndef HAS_HOMOGRAPHY_NET
printf(LOG_TRT "error -- homographyNet is supported only in TensorRT 5.0 and newer\n");
return NULL;
#endif
if( !model_path || !input || !output )
return NULL;
printf("\n");
printf("homographyNet -- loading homography network model from:\n");
printf(" -- model %s\n", model_path);
printf(" -- input_blob '%s'\n", input);
printf(" -- output_blob '%s'\n", output);
printf(" -- batch_size %u\n\n", maxBatchSize);
// create the homography network
homographyNet* net = new homographyNet();
if( !net )
return NULL;
// load the model
if( !net->LoadNetwork(NULL, model_path, NULL,
input, output, maxBatchSize,
precision, device, allowGPUFallback) )
{
printf(LOG_TRT "failed to load homographyNet\n");
delete net;
return NULL;
}
printf(LOG_TRT "%s loaded\n", model_path);
return net;
}
// Create
homographyNet* homographyNet::Create( int argc, char** argv )
{
commandLine cmdLine(argc, argv);
const char* model = cmdLine.GetString("model");
if( !model )
return homographyNet::Create();
homographyNet::NetworkType type = NetworkTypeFromStr(model);
if( type == homographyNet::CUSTOM )
{
const char* input = cmdLine.GetString("input_blob");
const char* output = cmdLine.GetString("output_blob");
if( !input ) input = HOMOGRAPHY_NET_DEFAULT_INPUT;
if( !output ) output = HOMOGRAPHY_NET_DEFAULT_OUTPUT;
int maxBatchSize = cmdLine.GetInt("batch_size");
if( maxBatchSize < 1 )
maxBatchSize = 1;
return homographyNet::Create(model, input, output, maxBatchSize);
}
// create from pretrained model
return homographyNet::Create(type);
}
// from homographyNet.cu
cudaError_t cudaPreHomographyNet( float4* inputA, float4* inputB, size_t inputWidth, size_t inputHeight,
float* output, size_t outputWidth, size_t outputHeight,
cudaStream_t stream );
// FindDisplacement
bool homographyNet::FindDisplacement( float* imageA, float* imageB, uint32_t width, uint32_t height, float displacement[8] )
{
#ifdef HAS_HOMOGRAPHY_NET
if( !imageA || !imageB || width == 0 || height == 0 )
{
printf(LOG_TRT "homographyNet::Process() -- invalid user inputs\n");
return false;
}
//printf("user input width=%u height=%u\n", width, height);
//printf("homg input width=%u height=%u\n", mWidth, mHeight);
/*
* convert/rescale the individual RGBA images into grayscale planar format
*/
if( CUDA_FAILED(cudaPreHomographyNet((float4*)imageA, (float4*)imageB, width, height,
mInputCUDA, mWidth, mHeight, GetStream())) )
{
printf(LOG_TRT "homographyNet::Process() -- cudaPreHomographyNet() failed\n");
return false;
}
/*
* perform the inferencing
*/
void* bindBuffers[] = { mInputCUDA, mOutputs[0].CUDA };
if( !mContext->execute(1, bindBuffers) )
{
printf(LOG_TRT "homographyNet::Process() -- failed to execute TensorRT network\n");
return false;
}
PROFILER_REPORT();
const uint32_t numOutputs = DIMS_C(mOutputs[0].dims);
#ifdef DEBUG_HOMOGRAPHY
printf("raw " );
for( uint32_t n=0; n < numOutputs; n++ )
printf("%f ", mOutputs[0].CPU[n]);
printf("\n");
#endif
/*
* rescale the raw outputs
*/
const float scale = 32.0f;
for( uint32_t n=0; n < numOutputs; n++ )
displacement[n] = mOutputs[0].CPU[n] * scale;
#ifdef DEBUG_HOMOGRAPHY
printf("*32 " );
for( uint32_t n=0; n < numOutputs; n++ )
printf("%f ", displacement[n]);
printf("\n");
#endif
return true;
#else
printf(LOG_TRT "error -- homographyNet is supported only in TensorRT 5.0 and newer\n");
return false;
#endif
}
// ComputeHomography
bool homographyNet::ComputeHomography( const float displacement[8], float H[3][3], float H_inv[3][3] )
{
#ifdef HAS_HOMOGRAPHY_NET
/*
* translate the x/y displacements back into corner points
*/
std::vector<cv::Point2f> pts1;
std::vector<cv::Point2f> pts2;
pts1.resize(4);
pts2.resize(4);
pts1[0].x = 0.0f; pts1[0].y = 0.0f;
pts1[1].x = mWidth; pts1[1].y = 0.0f;
pts1[2].x = mWidth; pts1[2].y = mHeight;
pts1[3].x = 0.0f; pts1[3].y = mHeight;
for( uint32_t n=0; n < 4; n++ )
{
pts2[n].x = pts1[n].x + displacement[n*2+0];
pts2[n].y = pts1[n].y + displacement[n*2+1];
}
#ifdef DEBUG_HOMOGRAPHY
for( uint32_t n=0; n < 4; n++ )
printf("pts1[%u] x=%f y=%f\n", n, pts1[n].x, pts1[n].y);
for( uint32_t n=0; n < 4; n++ )
printf("pts2[%u] x=%f y=%f\n", n, pts2[n].x, pts2[n].y);
#endif
/*
* estimate the homography using DLT
*/
cv::Mat H_cv = cv::findHomography(pts1, pts2);
if( H_cv.cols * H_cv.rows != 9 )
{
printf("homographyNet::Process() -- OpenCV matrix is unexpected size (%ix%i)\n", H_cv.cols, H_cv.rows);
return false;
}
/*
* compute the homography's inverse
*/
double* H_ptr = H_cv.ptr<double>();
//double H[3][3];
//double H_inv[3][3];
for( uint32_t i=0; i < 3; i++ )
for( uint32_t k=0; k < 3; k++ )
H[i][k] = H_ptr[i*3+k];
mat33_inverse(H_inv, H);
#ifdef DEBUG_HOMOGRAPHY
mat33_print(H, "H");
mat33_print(H_inv, "H_inv");
#endif
return true;
#else
printf(LOG_TRT "error -- homographyNet is supported only in TensorRT 5.0 and newer\n");
return false;
#endif
}
// ComputeHomography
bool homographyNet::ComputeHomography( const float displacement[8], float H[3][3] )
{
float H_inv[3][3];
return ComputeHomography(displacement, H, H_inv);
}
// FindHomography
bool homographyNet::FindHomography( float* imageA, float* imageB, uint32_t width, uint32_t height, float H[3][3], float H_inv[3][3] )
{
float displacement[8];
if( !FindDisplacement(imageA, imageB, width, height, displacement) )
return false;
return ComputeHomography(displacement, H, H_inv);
}
// FindHomography
bool homographyNet::FindHomography( float* imageA, float* imageB, uint32_t width, uint32_t height, float H[3][3] )
{
float H_inv[3][3];
return FindHomography(imageA, imageB, width, height, H, H_inv);
}
#if 0
/*
* create a default intrinsic camera calibration matrix
* note: should use a real calibration matrix here
*/
cv::Mat cam_intrinsic = cv::Mat::zeros(3, 3, CV_64FC1); // CV_32FC1
// focal length (TODO: fix for image size != 128)
const double fx = 114.0; // F = (img_size/2) * tan(FoV/2)
const double fy = fx; // F = (128/2) * tan(45/2)
cam_intrinsic.at<double>(0,0) = fx;
cam_intrinsic.at<double>(1,1) = fy;
cam_intrinsic.at<double>(2,2) = 1.0;
cam_intrinsic.at<double>(0,2) = double(mWidth - 1) * 0.5;
cam_intrinsic.at<double>(1,2) = double(mHeight - 1) * 0.5;
/*
* decompose the homography
*/
std::vector<cv::Mat> Rs_decomp, ts_decomp, normals_decomp;
printf("trt-console: beginning cv::decomposeHomography (%zu)\n", current_timestamp());
const int solutions = cv::decomposeHomographyMat(H_cv, cam_intrinsic, Rs_decomp, ts_decomp, normals_decomp);
printf("trt-console: finished cv::decomposeHomography (%zu)\n", current_timestamp());
std::cout << std::endl << "Decompose homography matrix computed from the camera displacement:" << std::endl;
for (int i = 0; i < solutions; i++)
{
const double factor_d1 = 1.0; //const double factor_d1 = 1.0 / d_inv1;
cv::Mat rvec_decomp;
cv::Rodrigues(Rs_decomp[i], rvec_decomp);
std::cout << std::endl << "Solution " << i << ":" << std::endl;
std::cout << "rvec from homography decomposition: " << rvec_decomp.t() << std::endl;
//std::cout << "rvec from camera displacement: " << rvec_1to2.t() << std::endl;
std::cout << "tvec from homography decomposition: " << ts_decomp[i].t() << " and scaled by d: " << factor_d1 * ts_decomp[i].t() << std::endl;
//std::cout << "tvec from camera displacement: " << t_1to2.t() << std::endl;
std::cout << "plane normal from homography decomposition: " << normals_decomp[i].t() << std::endl;
//std::cout << "plane normal at camera 1 pose: " << normal1.t() << std::endl << std::endl;
}
/*
* filter the possible decomposition solutions
*/
cv::Mat filtered_decomp = cv::filterHomographyDecomp(Rs_decomp, normals_decomp,
pts1, pts2, cv::Mat());
printf("filtered solutions mat (%ix%i) (type=%i)\n", filtered_decomp.cols, filtered_decomp.rows, filtered_decomp.type());
#endif