forked from dusty-nv/jetson-inference
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimageNet.h
183 lines (151 loc) · 6.63 KB
/
imageNet.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
/*
* Copyright (c) 2017, NVIDIA CORPORATION. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#ifndef __IMAGE_NET_H__
#define __IMAGE_NET_H__
#include "tensorNet.h"
/**
* Name of default input blob for imageNet model.
* @ingroup deepVision
*/
#define IMAGENET_DEFAULT_INPUT "data"
/**
* Name of default output confidence values for imageNet model.
* @ingroup deepVision
*/
#define IMAGENET_DEFAULT_OUTPUT "prob"
/**
* Image recognition with GoogleNet/Alexnet or custom models, using TensorRT.
* @ingroup deepVision
*/
class imageNet : public tensorNet
{
public:
/**
* Network choice enumeration.
*/
enum NetworkType
{
CUSTOM,
ALEXNET, /**< 1000-class ILSVR12 */
GOOGLENET, /**< 1000-class ILSVR12 */
GOOGLENET_12 /**< 12-class subset of ImageNet ILSVR12 from the tutorial */
};
/**
* Parse a string to one of the built-in pretrained models.
* Valid names are "alexnet", "googlenet", "googlenet-12", or "googlenet_12".
* @returns one of the imageNet::NetworkType enums, or imageNet::CUSTOM on invalid string.
*/
static NetworkType NetworkTypeFromStr( const char* model_name );
/**
* Load a new network instance
*/
static imageNet* Create( NetworkType networkType=GOOGLENET, uint32_t maxBatchSize=2,
precisionType precision=TYPE_FASTEST,
deviceType device=DEVICE_GPU, bool allowGPUFallback=true );
/**
* Load a new network instance
* @param prototxt_path File path to the deployable network prototxt
* @param model_path File path to the caffemodel
* @param mean_binary File path to the mean value binary proto (can be NULL)
* @param class_info File path to list of class name labels
* @param input Name of the input layer blob.
* @param maxBatchSize The maximum batch size that the network will support and be optimized for.
*/
static imageNet* Create( const char* prototxt_path, const char* model_path,
const char* mean_binary, const char* class_labels,
const char* input=IMAGENET_DEFAULT_INPUT,
const char* output=IMAGENET_DEFAULT_OUTPUT,
uint32_t maxBatchSize=2, precisionType precision=TYPE_FASTEST,
deviceType device=DEVICE_GPU, bool allowGPUFallback=true );
/**
* Load a new network instance by parsing the command line.
*/
static imageNet* Create( int argc, char** argv );
/**
* Destroy
*/
virtual ~imageNet();
/**
* Determine the maximum likelihood image class.
* This function performs pre-processing to the image (apply mean-value subtraction and NCHW format), @see PreProcess()
* @param rgba float4 input image in CUDA device memory.
* @param width width of the input image in pixels.
* @param height height of the input image in pixels.
* @param confidence optional pointer to float filled with confidence value.
* @returns Index of the maximum class, or -1 on error.
*/
int Classify( float* rgba, uint32_t width, uint32_t height, float* confidence=NULL );
/**
* Determine the maximum likelihood image class.
* @note before calling this function, you must call PreProcess() with the image.
* @param confidence optional pointer to float filled with confidence value.
* @returns Index of the maximum class, or -1 on error.
*/
int Classify( float* confidence=NULL );
/**
* Perform pre-processing on the image to apply mean-value subtraction and
* to organize the data into NCHW format and BGR colorspace that the networks expect.
* After calling PreProcess(), you can call Classify() without supplying all the parameters.
*/
bool PreProcess( float* rgba, uint32_t width, uint32_t height );
/**
* Process the network, without determining the classification argmax.
* To perform the actual classification via post-processing, Classify() should be used instead.
*/
bool Process();
/**
* Retrieve the number of image recognition classes (typically 1000)
*/
inline uint32_t GetNumClasses() const { return mOutputClasses; }
/**
* Retrieve the description of a particular class.
*/
inline const char* GetClassDesc( uint32_t index ) const { return mClassDesc[index].c_str(); }
/**
* Retrieve the class synset category of a particular class.
*/
inline const char* GetClassSynset( uint32_t index ) const { return mClassSynset[index].c_str(); }
/**
* Retrieve the path to the file containing the class descriptions.
*/
inline const char* GetClassPath() const { return mClassPath.c_str(); }
/**
* Retrieve the network type (alexnet or googlenet)
*/
inline NetworkType GetNetworkType() const { return mNetworkType; }
/**
* Retrieve a string describing the network name.
*/
inline const char* GetNetworkName() const { if(mNetworkType == GOOGLENET) return "googlenet"; else if(mNetworkType == GOOGLENET_12) return "googlenet_12"; else if(mNetworkType == ALEXNET) return "alexnet"; else return "custom"; }
protected:
imageNet();
bool init( NetworkType networkType, uint32_t maxBatchSize, precisionType precision, deviceType device, bool allowGPUFallback );
bool init(const char* prototxt_path, const char* model_path, const char* mean_binary, const char* class_path, const char* input, const char* output, uint32_t maxBatchSize, precisionType precision, deviceType device, bool allowGPUFallback );
bool loadClassInfo( const char* filename );
uint32_t mCustomClasses;
uint32_t mOutputClasses;
std::vector<std::string> mClassSynset; // 1000 class ID's (ie n01580077, n04325704)
std::vector<std::string> mClassDesc;
std::string mClassPath;
NetworkType mNetworkType;
};
#endif