forked from TixiaoShan/LIO-SAM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimuPreintegration.cpp
519 lines (432 loc) · 21.2 KB
/
imuPreintegration.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
#include "utility.h"
#include <gtsam/geometry/Rot3.h>
#include <gtsam/geometry/Pose3.h>
#include <gtsam/slam/PriorFactor.h>
#include <gtsam/slam/BetweenFactor.h>
#include <gtsam/navigation/GPSFactor.h>
#include <gtsam/navigation/ImuFactor.h>
#include <gtsam/navigation/CombinedImuFactor.h>
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
#include <gtsam/nonlinear/Marginals.h>
#include <gtsam/nonlinear/Values.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/nonlinear/ISAM2.h>
#include <gtsam_unstable/nonlinear/IncrementalFixedLagSmoother.h>
using gtsam::symbol_shorthand::X; // Pose3 (x,y,z,r,p,y)
using gtsam::symbol_shorthand::V; // Vel (xdot,ydot,zdot)
using gtsam::symbol_shorthand::B; // Bias (ax,ay,az,gx,gy,gz)
class TransformFusion : public ParamServer
{
public:
std::mutex mtx;
ros::Subscriber subImuOdometry;
ros::Subscriber subLaserOdometry;
ros::Publisher pubImuOdometry;
ros::Publisher pubImuPath;
Eigen::Affine3f lidarOdomAffine;
Eigen::Affine3f imuOdomAffineFront;
Eigen::Affine3f imuOdomAffineBack;
tf::TransformListener tfListener;
tf::StampedTransform lidar2Baselink;
double lidarOdomTime = -1;
deque<nav_msgs::Odometry> imuOdomQueue;
TransformFusion()
{
if(lidarFrame != baselinkFrame)
{
try
{
tfListener.waitForTransform(lidarFrame, baselinkFrame, ros::Time(0), ros::Duration(3.0));
tfListener.lookupTransform(lidarFrame, baselinkFrame, ros::Time(0), lidar2Baselink);
}
catch (tf::TransformException ex)
{
ROS_ERROR("%s",ex.what());
}
}
subLaserOdometry = nh.subscribe<nav_msgs::Odometry>("lio_sam/mapping/odometry", 5, &TransformFusion::lidarOdometryHandler, this, ros::TransportHints().tcpNoDelay());
subImuOdometry = nh.subscribe<nav_msgs::Odometry>(odomTopic+"_incremental", 2000, &TransformFusion::imuOdometryHandler, this, ros::TransportHints().tcpNoDelay());
pubImuOdometry = nh.advertise<nav_msgs::Odometry>(odomTopic, 2000);
pubImuPath = nh.advertise<nav_msgs::Path> ("lio_sam/imu/path", 1);
}
Eigen::Affine3f odom2affine(nav_msgs::Odometry odom)
{
double x, y, z, roll, pitch, yaw;
x = odom.pose.pose.position.x;
y = odom.pose.pose.position.y;
z = odom.pose.pose.position.z;
tf::Quaternion orientation;
tf::quaternionMsgToTF(odom.pose.pose.orientation, orientation);
tf::Matrix3x3(orientation).getRPY(roll, pitch, yaw);
return pcl::getTransformation(x, y, z, roll, pitch, yaw);
}
void lidarOdometryHandler(const nav_msgs::Odometry::ConstPtr& odomMsg)
{
std::lock_guard<std::mutex> lock(mtx);
lidarOdomAffine = odom2affine(*odomMsg);
lidarOdomTime = odomMsg->header.stamp.toSec();
}
void imuOdometryHandler(const nav_msgs::Odometry::ConstPtr& odomMsg)
{
// static tf
static tf::TransformBroadcaster tfMap2Odom;
static tf::Transform map_to_odom = tf::Transform(tf::createQuaternionFromRPY(0, 0, 0), tf::Vector3(0, 0, 0));
tfMap2Odom.sendTransform(tf::StampedTransform(map_to_odom, odomMsg->header.stamp, mapFrame, odometryFrame));
std::lock_guard<std::mutex> lock(mtx);
imuOdomQueue.push_back(*odomMsg);
// get latest odometry (at current IMU stamp)
if (lidarOdomTime == -1)
return;
while (!imuOdomQueue.empty())
{
if (imuOdomQueue.front().header.stamp.toSec() <= lidarOdomTime)
imuOdomQueue.pop_front();
else
break;
}
Eigen::Affine3f imuOdomAffineFront = odom2affine(imuOdomQueue.front());
Eigen::Affine3f imuOdomAffineBack = odom2affine(imuOdomQueue.back());
Eigen::Affine3f imuOdomAffineIncre = imuOdomAffineFront.inverse() * imuOdomAffineBack;
Eigen::Affine3f imuOdomAffineLast = lidarOdomAffine * imuOdomAffineIncre;
float x, y, z, roll, pitch, yaw;
pcl::getTranslationAndEulerAngles(imuOdomAffineLast, x, y, z, roll, pitch, yaw);
// publish latest odometry
nav_msgs::Odometry laserOdometry = imuOdomQueue.back();
laserOdometry.pose.pose.position.x = x;
laserOdometry.pose.pose.position.y = y;
laserOdometry.pose.pose.position.z = z;
laserOdometry.pose.pose.orientation = tf::createQuaternionMsgFromRollPitchYaw(roll, pitch, yaw);
pubImuOdometry.publish(laserOdometry);
// publish tf
static tf::TransformBroadcaster tfOdom2BaseLink;
tf::Transform tCur;
tf::poseMsgToTF(laserOdometry.pose.pose, tCur);
if(lidarFrame != baselinkFrame)
tCur = tCur * lidar2Baselink;
tf::StampedTransform odom_2_baselink = tf::StampedTransform(tCur, odomMsg->header.stamp, odometryFrame, baselinkFrame);
tfOdom2BaseLink.sendTransform(odom_2_baselink);
// publish IMU path
static nav_msgs::Path imuPath;
static double last_path_time = -1;
double imuTime = imuOdomQueue.back().header.stamp.toSec();
if (imuTime - last_path_time > 0.1)
{
last_path_time = imuTime;
geometry_msgs::PoseStamped pose_stamped;
pose_stamped.header.stamp = imuOdomQueue.back().header.stamp;
pose_stamped.header.frame_id = odometryFrame;
pose_stamped.pose = laserOdometry.pose.pose;
imuPath.poses.push_back(pose_stamped);
while(!imuPath.poses.empty() && imuPath.poses.front().header.stamp.toSec() < lidarOdomTime - 0.1)
imuPath.poses.erase(imuPath.poses.begin());
if (pubImuPath.getNumSubscribers() != 0)
{
imuPath.header.stamp = imuOdomQueue.back().header.stamp;
imuPath.header.frame_id = odometryFrame;
pubImuPath.publish(imuPath);
}
}
}
};
class IMUPreintegration : public ParamServer
{
public:
std::mutex mtx;
ros::Subscriber subImu;
ros::Subscriber subOdometry;
ros::Publisher pubImuOdometry;
bool systemInitialized = false;
gtsam::noiseModel::Diagonal::shared_ptr priorPoseNoise;
gtsam::noiseModel::Diagonal::shared_ptr priorVelNoise;
gtsam::noiseModel::Diagonal::shared_ptr priorBiasNoise;
gtsam::noiseModel::Diagonal::shared_ptr correctionNoise;
gtsam::Vector noiseModelBetweenBias;
gtsam::PreintegratedImuMeasurements *imuIntegratorOpt_;
gtsam::PreintegratedImuMeasurements *imuIntegratorImu_;
std::deque<sensor_msgs::Imu> imuQueOpt;
std::deque<sensor_msgs::Imu> imuQueImu;
gtsam::Pose3 prevPose_;
gtsam::Vector3 prevVel_;
gtsam::NavState prevState_;
gtsam::imuBias::ConstantBias prevBias_;
gtsam::NavState prevStateOdom;
gtsam::imuBias::ConstantBias prevBiasOdom;
bool doneFirstOpt = false;
double lastImuT_imu = -1;
double lastImuT_opt = -1;
gtsam::ISAM2 optimizer;
gtsam::NonlinearFactorGraph graphFactors;
gtsam::Values graphValues;
const double delta_t = 0;
int key = 1;
gtsam::Pose3 imu2Lidar = gtsam::Pose3(gtsam::Rot3(1, 0, 0, 0), gtsam::Point3(-extTrans.x(), -extTrans.y(), -extTrans.z()));
gtsam::Pose3 lidar2Imu = gtsam::Pose3(gtsam::Rot3(1, 0, 0, 0), gtsam::Point3(extTrans.x(), extTrans.y(), extTrans.z()));
IMUPreintegration()
{
subImu = nh.subscribe<sensor_msgs::Imu> (imuTopic, 2000, &IMUPreintegration::imuHandler, this, ros::TransportHints().tcpNoDelay());
subOdometry = nh.subscribe<nav_msgs::Odometry>("lio_sam/mapping/odometry_incremental", 5, &IMUPreintegration::odometryHandler, this, ros::TransportHints().tcpNoDelay());
pubImuOdometry = nh.advertise<nav_msgs::Odometry> (odomTopic+"_incremental", 2000);
boost::shared_ptr<gtsam::PreintegrationParams> p = gtsam::PreintegrationParams::MakeSharedU(imuGravity);
p->accelerometerCovariance = gtsam::Matrix33::Identity(3,3) * pow(imuAccNoise, 2); // acc white noise in continuous
p->gyroscopeCovariance = gtsam::Matrix33::Identity(3,3) * pow(imuGyrNoise, 2); // gyro white noise in continuous
p->integrationCovariance = gtsam::Matrix33::Identity(3,3) * pow(1e-4, 2); // error committed in integrating position from velocities
gtsam::imuBias::ConstantBias prior_imu_bias((gtsam::Vector(6) << 0, 0, 0, 0, 0, 0).finished());; // assume zero initial bias
priorPoseNoise = gtsam::noiseModel::Diagonal::Sigmas((gtsam::Vector(6) << 1e-2, 1e-2, 1e-2, 1e-2, 1e-2, 1e-2).finished()); // rad,rad,rad,m, m, m
priorVelNoise = gtsam::noiseModel::Isotropic::Sigma(3, 1e4); // m/s
priorBiasNoise = gtsam::noiseModel::Isotropic::Sigma(6, 1e-3); // 1e-2 ~ 1e-3 seems to be good
correctionNoise = gtsam::noiseModel::Isotropic::Sigma(6, 1); // meter
noiseModelBetweenBias = (gtsam::Vector(6) << imuAccBiasN, imuAccBiasN, imuAccBiasN, imuGyrBiasN, imuGyrBiasN, imuGyrBiasN).finished();
imuIntegratorImu_ = new gtsam::PreintegratedImuMeasurements(p, prior_imu_bias); // setting up the IMU integration for IMU message thread
imuIntegratorOpt_ = new gtsam::PreintegratedImuMeasurements(p, prior_imu_bias); // setting up the IMU integration for optimization
}
void resetOptimization()
{
gtsam::ISAM2Params optParameters;
optParameters.relinearizeThreshold = 0.1;
optParameters.relinearizeSkip = 1;
optimizer = gtsam::ISAM2(optParameters);
gtsam::NonlinearFactorGraph newGraphFactors;
graphFactors = newGraphFactors;
gtsam::Values NewGraphValues;
graphValues = NewGraphValues;
}
void resetParams()
{
lastImuT_imu = -1;
doneFirstOpt = false;
systemInitialized = false;
}
void odometryHandler(const nav_msgs::Odometry::ConstPtr& odomMsg)
{
std::lock_guard<std::mutex> lock(mtx);
double currentCorrectionTime = ROS_TIME(odomMsg);
// make sure we have imu data to integrate
if (imuQueOpt.empty())
return;
float p_x = odomMsg->pose.pose.position.x;
float p_y = odomMsg->pose.pose.position.y;
float p_z = odomMsg->pose.pose.position.z;
float r_x = odomMsg->pose.pose.orientation.x;
float r_y = odomMsg->pose.pose.orientation.y;
float r_z = odomMsg->pose.pose.orientation.z;
float r_w = odomMsg->pose.pose.orientation.w;
gtsam::Pose3 lidarPose = gtsam::Pose3(gtsam::Rot3::Quaternion(r_w, r_x, r_y, r_z), gtsam::Point3(p_x, p_y, p_z));
// 0. initialize system
if (systemInitialized == false)
{
resetOptimization();
// pop old IMU message
while (!imuQueOpt.empty())
{
if (ROS_TIME(&imuQueOpt.front()) < currentCorrectionTime - delta_t)
{
lastImuT_opt = ROS_TIME(&imuQueOpt.front());
imuQueOpt.pop_front();
}
else
break;
}
// initial pose
prevPose_ = lidarPose.compose(lidar2Imu);
gtsam::PriorFactor<gtsam::Pose3> priorPose(X(0), prevPose_, priorPoseNoise);
graphFactors.add(priorPose);
// initial velocity
prevVel_ = gtsam::Vector3(0, 0, 0);
gtsam::PriorFactor<gtsam::Vector3> priorVel(V(0), prevVel_, priorVelNoise);
graphFactors.add(priorVel);
// initial bias
prevBias_ = gtsam::imuBias::ConstantBias();
gtsam::PriorFactor<gtsam::imuBias::ConstantBias> priorBias(B(0), prevBias_, priorBiasNoise);
graphFactors.add(priorBias);
// add values
graphValues.insert(X(0), prevPose_);
graphValues.insert(V(0), prevVel_);
graphValues.insert(B(0), prevBias_);
// optimize once
optimizer.update(graphFactors, graphValues);
graphFactors.resize(0);
graphValues.clear();
imuIntegratorImu_->resetIntegrationAndSetBias(prevBias_);
imuIntegratorOpt_->resetIntegrationAndSetBias(prevBias_);
key = 1;
systemInitialized = true;
return;
}
// reset graph for speed
if (key == 100)
{
// get updated noise before reset
gtsam::noiseModel::Gaussian::shared_ptr updatedPoseNoise = gtsam::noiseModel::Gaussian::Covariance(optimizer.marginalCovariance(X(key-1)));
gtsam::noiseModel::Gaussian::shared_ptr updatedVelNoise = gtsam::noiseModel::Gaussian::Covariance(optimizer.marginalCovariance(V(key-1)));
gtsam::noiseModel::Gaussian::shared_ptr updatedBiasNoise = gtsam::noiseModel::Gaussian::Covariance(optimizer.marginalCovariance(B(key-1)));
// reset graph
resetOptimization();
// add pose
gtsam::PriorFactor<gtsam::Pose3> priorPose(X(0), prevPose_, updatedPoseNoise);
graphFactors.add(priorPose);
// add velocity
gtsam::PriorFactor<gtsam::Vector3> priorVel(V(0), prevVel_, updatedVelNoise);
graphFactors.add(priorVel);
// add bias
gtsam::PriorFactor<gtsam::imuBias::ConstantBias> priorBias(B(0), prevBias_, updatedBiasNoise);
graphFactors.add(priorBias);
// add values
graphValues.insert(X(0), prevPose_);
graphValues.insert(V(0), prevVel_);
graphValues.insert(B(0), prevBias_);
// optimize once
optimizer.update(graphFactors, graphValues);
graphFactors.resize(0);
graphValues.clear();
key = 1;
}
// 1. integrate imu data and optimize
while (!imuQueOpt.empty())
{
// pop and integrate imu data that is between two optimizations
sensor_msgs::Imu *thisImu = &imuQueOpt.front();
double imuTime = ROS_TIME(thisImu);
if (imuTime < currentCorrectionTime - delta_t)
{
double dt = (lastImuT_opt < 0) ? (1.0 / 500.0) : (imuTime - lastImuT_opt);
imuIntegratorOpt_->integrateMeasurement(
gtsam::Vector3(thisImu->linear_acceleration.x, thisImu->linear_acceleration.y, thisImu->linear_acceleration.z),
gtsam::Vector3(thisImu->angular_velocity.x, thisImu->angular_velocity.y, thisImu->angular_velocity.z), dt);
lastImuT_opt = imuTime;
imuQueOpt.pop_front();
}
else
break;
}
// add imu factor to graph
const gtsam::PreintegratedImuMeasurements& preint_imu = dynamic_cast<const gtsam::PreintegratedImuMeasurements&>(*imuIntegratorOpt_);
gtsam::ImuFactor imu_factor(X(key - 1), V(key - 1), X(key), V(key), B(key - 1), preint_imu);
graphFactors.add(imu_factor);
// add imu bias between factor
graphFactors.add(gtsam::BetweenFactor<gtsam::imuBias::ConstantBias>(B(key - 1), B(key), gtsam::imuBias::ConstantBias(),
gtsam::noiseModel::Diagonal::Sigmas(sqrt(imuIntegratorOpt_->deltaTij()) * noiseModelBetweenBias)));
// add pose factor
gtsam::Pose3 curPose = lidarPose.compose(lidar2Imu);
gtsam::PriorFactor<gtsam::Pose3> pose_factor(X(key), curPose, correctionNoise);
graphFactors.add(pose_factor);
// insert predicted values
gtsam::NavState propState_ = imuIntegratorOpt_->predict(prevState_, prevBias_);
graphValues.insert(X(key), propState_.pose());
graphValues.insert(V(key), propState_.v());
graphValues.insert(B(key), prevBias_);
// optimize
optimizer.update(graphFactors, graphValues);
optimizer.update();
graphFactors.resize(0);
graphValues.clear();
// Overwrite the beginning of the preintegration for the next step.
gtsam::Values result = optimizer.calculateEstimate();
prevPose_ = result.at<gtsam::Pose3>(X(key));
prevVel_ = result.at<gtsam::Vector3>(V(key));
prevState_ = gtsam::NavState(prevPose_, prevVel_);
prevBias_ = result.at<gtsam::imuBias::ConstantBias>(B(key));
// Reset the optimization preintegration object.
imuIntegratorOpt_->resetIntegrationAndSetBias(prevBias_);
// check optimization
if (failureDetection(prevVel_, prevBias_))
{
resetParams();
return;
}
// 2. after optiization, re-propagate imu odometry preintegration
prevStateOdom = prevState_;
prevBiasOdom = prevBias_;
// first pop imu message older than current correction data
double lastImuQT = -1;
while (!imuQueImu.empty() && ROS_TIME(&imuQueImu.front()) < currentCorrectionTime - delta_t)
{
lastImuQT = ROS_TIME(&imuQueImu.front());
imuQueImu.pop_front();
}
// repropogate
if (!imuQueImu.empty())
{
// reset bias use the newly optimized bias
imuIntegratorImu_->resetIntegrationAndSetBias(prevBiasOdom);
// integrate imu message from the beginning of this optimization
for (int i = 0; i < (int)imuQueImu.size(); ++i)
{
sensor_msgs::Imu *thisImu = &imuQueImu[i];
double imuTime = ROS_TIME(thisImu);
double dt = (lastImuQT < 0) ? (1.0 / 500.0) :(imuTime - lastImuQT);
imuIntegratorImu_->integrateMeasurement(gtsam::Vector3(thisImu->linear_acceleration.x, thisImu->linear_acceleration.y, thisImu->linear_acceleration.z),
gtsam::Vector3(thisImu->angular_velocity.x, thisImu->angular_velocity.y, thisImu->angular_velocity.z), dt);
lastImuQT = imuTime;
}
}
++key;
doneFirstOpt = true;
}
bool failureDetection(const gtsam::Vector3& velCur, const gtsam::imuBias::ConstantBias& biasCur)
{
Eigen::Vector3f vel(velCur.x(), velCur.y(), velCur.z());
if (vel.norm() > 30)
{
ROS_WARN("Large velocity, reset IMU-preintegration!");
return true;
}
Eigen::Vector3f ba(biasCur.accelerometer().x(), biasCur.accelerometer().y(), biasCur.accelerometer().z());
Eigen::Vector3f bg(biasCur.gyroscope().x(), biasCur.gyroscope().y(), biasCur.gyroscope().z());
if (ba.norm() > 1.0 || bg.norm() > 1.0)
{
ROS_WARN("Large bias, reset IMU-preintegration!");
return true;
}
return false;
}
void imuHandler(const sensor_msgs::Imu::ConstPtr& imu_raw)
{
std::lock_guard<std::mutex> lock(mtx);
sensor_msgs::Imu thisImu = imuConverter(*imu_raw);
imuQueOpt.push_back(thisImu);
imuQueImu.push_back(thisImu);
if (doneFirstOpt == false)
return;
double imuTime = ROS_TIME(&thisImu);
double dt = (lastImuT_imu < 0) ? (1.0 / 500.0) : (imuTime - lastImuT_imu);
lastImuT_imu = imuTime;
// integrate this single imu message
imuIntegratorImu_->integrateMeasurement(gtsam::Vector3(thisImu.linear_acceleration.x, thisImu.linear_acceleration.y, thisImu.linear_acceleration.z),
gtsam::Vector3(thisImu.angular_velocity.x, thisImu.angular_velocity.y, thisImu.angular_velocity.z), dt);
// predict odometry
gtsam::NavState currentState = imuIntegratorImu_->predict(prevStateOdom, prevBiasOdom);
// publish odometry
nav_msgs::Odometry odometry;
odometry.header.stamp = thisImu.header.stamp;
odometry.header.frame_id = odometryFrame;
odometry.child_frame_id = "odom_imu";
// transform imu pose to ldiar
gtsam::Pose3 imuPose = gtsam::Pose3(currentState.quaternion(), currentState.position());
gtsam::Pose3 lidarPose = imuPose.compose(imu2Lidar);
odometry.pose.pose.position.x = lidarPose.translation().x();
odometry.pose.pose.position.y = lidarPose.translation().y();
odometry.pose.pose.position.z = lidarPose.translation().z();
odometry.pose.pose.orientation.x = lidarPose.rotation().toQuaternion().x();
odometry.pose.pose.orientation.y = lidarPose.rotation().toQuaternion().y();
odometry.pose.pose.orientation.z = lidarPose.rotation().toQuaternion().z();
odometry.pose.pose.orientation.w = lidarPose.rotation().toQuaternion().w();
odometry.twist.twist.linear.x = currentState.velocity().x();
odometry.twist.twist.linear.y = currentState.velocity().y();
odometry.twist.twist.linear.z = currentState.velocity().z();
odometry.twist.twist.angular.x = thisImu.angular_velocity.x + prevBiasOdom.gyroscope().x();
odometry.twist.twist.angular.y = thisImu.angular_velocity.y + prevBiasOdom.gyroscope().y();
odometry.twist.twist.angular.z = thisImu.angular_velocity.z + prevBiasOdom.gyroscope().z();
pubImuOdometry.publish(odometry);
}
};
int main(int argc, char** argv)
{
ros::init(argc, argv, "roboat_loam");
IMUPreintegration ImuP;
TransformFusion TF;
ROS_INFO("\033[1;32m----> IMU Preintegration Started.\033[0m");
ros::MultiThreadedSpinner spinner(4);
spinner.spin();
return 0;
}