forked from WongKinYiu/yolor
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlayers.py
534 lines (394 loc) · 18 KB
/
layers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
import torch.nn.functional as F
from utils.general import *
import torch
from torch import nn
try:
from mish_cuda import MishCuda as Mish
except:
class Mish(nn.Module): # https://github.com/digantamisra98/Mish
def forward(self, x):
return x * F.softplus(x).tanh()
try:
from pytorch_wavelets import DWTForward, DWTInverse
class DWT(nn.Module):
def __init__(self):
super(DWT, self).__init__()
self.xfm = DWTForward(J=1, wave='db1', mode='zero')
def forward(self, x):
b,c,w,h = x.shape
yl, yh = self.xfm(x)
return torch.cat([yl/2., yh[0].view(b,-1,w//2,h//2)/2.+.5], 1)
except: # using Reorg instead
class DWT(nn.Module):
def forward(self, x):
return torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1)
class Reorg(nn.Module):
def forward(self, x):
return torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1)
def make_divisible(v, divisor):
# Function ensures all layers have a channel number that is divisible by 8
# https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
return math.ceil(v / divisor) * divisor
class Flatten(nn.Module):
# Use after nn.AdaptiveAvgPool2d(1) to remove last 2 dimensions
def forward(self, x):
return x.view(x.size(0), -1)
class Concat(nn.Module):
# Concatenate a list of tensors along dimension
def __init__(self, dimension=1):
super(Concat, self).__init__()
self.d = dimension
def forward(self, x):
return torch.cat(x, self.d)
class FeatureConcat(nn.Module):
def __init__(self, layers):
super(FeatureConcat, self).__init__()
self.layers = layers # layer indices
self.multiple = len(layers) > 1 # multiple layers flag
def forward(self, x, outputs):
return torch.cat([outputs[i] for i in self.layers], 1) if self.multiple else outputs[self.layers[0]]
class FeatureConcat2(nn.Module):
def __init__(self, layers):
super(FeatureConcat2, self).__init__()
self.layers = layers # layer indices
self.multiple = len(layers) > 1 # multiple layers flag
def forward(self, x, outputs):
return torch.cat([outputs[self.layers[0]], outputs[self.layers[1]].detach()], 1)
class FeatureConcat3(nn.Module):
def __init__(self, layers):
super(FeatureConcat3, self).__init__()
self.layers = layers # layer indices
self.multiple = len(layers) > 1 # multiple layers flag
def forward(self, x, outputs):
return torch.cat([outputs[self.layers[0]], outputs[self.layers[1]].detach(), outputs[self.layers[2]].detach()], 1)
class FeatureConcat_l(nn.Module):
def __init__(self, layers):
super(FeatureConcat_l, self).__init__()
self.layers = layers # layer indices
self.multiple = len(layers) > 1 # multiple layers flag
def forward(self, x, outputs):
return torch.cat([outputs[i][:,:outputs[i].shape[1]//2,:,:] for i in self.layers], 1) if self.multiple else outputs[self.layers[0]][:,:outputs[self.layers[0]].shape[1]//2,:,:]
class WeightedFeatureFusion(nn.Module): # weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
def __init__(self, layers, weight=False):
super(WeightedFeatureFusion, self).__init__()
self.layers = layers # layer indices
self.weight = weight # apply weights boolean
self.n = len(layers) + 1 # number of layers
if weight:
self.w = nn.Parameter(torch.zeros(self.n), requires_grad=True) # layer weights
def forward(self, x, outputs):
# Weights
if self.weight:
w = torch.sigmoid(self.w) * (2 / self.n) # sigmoid weights (0-1)
x = x * w[0]
# Fusion
nx = x.shape[1] # input channels
for i in range(self.n - 1):
a = outputs[self.layers[i]] * w[i + 1] if self.weight else outputs[self.layers[i]] # feature to add
na = a.shape[1] # feature channels
# Adjust channels
if nx == na: # same shape
x = x + a
elif nx > na: # slice input
x[:, :na] = x[:, :na] + a # or a = nn.ZeroPad2d((0, 0, 0, 0, 0, dc))(a); x = x + a
else: # slice feature
x = x + a[:, :nx]
return x
class MixConv2d(nn.Module): # MixConv: Mixed Depthwise Convolutional Kernels https://arxiv.org/abs/1907.09595
def __init__(self, in_ch, out_ch, k=(3, 5, 7), stride=1, dilation=1, bias=True, method='equal_params'):
super(MixConv2d, self).__init__()
groups = len(k)
if method == 'equal_ch': # equal channels per group
i = torch.linspace(0, groups - 1E-6, out_ch).floor() # out_ch indices
ch = [(i == g).sum() for g in range(groups)]
else: # 'equal_params': equal parameter count per group
b = [out_ch] + [0] * groups
a = np.eye(groups + 1, groups, k=-1)
a -= np.roll(a, 1, axis=1)
a *= np.array(k) ** 2
a[0] = 1
ch = np.linalg.lstsq(a, b, rcond=None)[0].round().astype(int) # solve for equal weight indices, ax = b
self.m = nn.ModuleList([nn.Conv2d(in_channels=in_ch,
out_channels=ch[g],
kernel_size=k[g],
stride=stride,
padding=k[g] // 2, # 'same' pad
dilation=dilation,
bias=bias) for g in range(groups)])
def forward(self, x):
return torch.cat([m(x) for m in self.m], 1)
# Activation functions below -------------------------------------------------------------------------------------------
class SwishImplementation(torch.autograd.Function):
@staticmethod
def forward(ctx, x):
ctx.save_for_backward(x)
return x * torch.sigmoid(x)
@staticmethod
def backward(ctx, grad_output):
x = ctx.saved_tensors[0]
sx = torch.sigmoid(x) # sigmoid(ctx)
return grad_output * (sx * (1 + x * (1 - sx)))
class MishImplementation(torch.autograd.Function):
@staticmethod
def forward(ctx, x):
ctx.save_for_backward(x)
return x.mul(torch.tanh(F.softplus(x))) # x * tanh(ln(1 + exp(x)))
@staticmethod
def backward(ctx, grad_output):
x = ctx.saved_tensors[0]
sx = torch.sigmoid(x)
fx = F.softplus(x).tanh()
return grad_output * (fx + x * sx * (1 - fx * fx))
class MemoryEfficientSwish(nn.Module):
def forward(self, x):
return SwishImplementation.apply(x)
class MemoryEfficientMish(nn.Module):
def forward(self, x):
return MishImplementation.apply(x)
class Swish(nn.Module):
def forward(self, x):
return x * torch.sigmoid(x)
class HardSwish(nn.Module): # https://arxiv.org/pdf/1905.02244.pdf
def forward(self, x):
return x * F.hardtanh(x + 3, 0., 6., True) / 6.
class DeformConv2d(nn.Module):
def __init__(self, inc, outc, kernel_size=3, padding=1, stride=1, bias=None, modulation=False):
"""
Args:
modulation (bool, optional): If True, Modulated Defomable Convolution (Deformable ConvNets v2).
"""
super(DeformConv2d, self).__init__()
self.kernel_size = kernel_size
self.padding = padding
self.stride = stride
self.zero_padding = nn.ZeroPad2d(padding)
self.conv = nn.Conv2d(inc, outc, kernel_size=kernel_size, stride=kernel_size, bias=bias)
self.p_conv = nn.Conv2d(inc, 2*kernel_size*kernel_size, kernel_size=3, padding=1, stride=stride)
nn.init.constant_(self.p_conv.weight, 0)
self.p_conv.register_backward_hook(self._set_lr)
self.modulation = modulation
if modulation:
self.m_conv = nn.Conv2d(inc, kernel_size*kernel_size, kernel_size=3, padding=1, stride=stride)
nn.init.constant_(self.m_conv.weight, 0)
self.m_conv.register_backward_hook(self._set_lr)
@staticmethod
def _set_lr(module, grad_input, grad_output):
grad_input = (grad_input[i] * 0.1 for i in range(len(grad_input)))
grad_output = (grad_output[i] * 0.1 for i in range(len(grad_output)))
def forward(self, x):
offset = self.p_conv(x)
if self.modulation:
m = torch.sigmoid(self.m_conv(x))
dtype = offset.data.type()
ks = self.kernel_size
N = offset.size(1) // 2
if self.padding:
x = self.zero_padding(x)
# (b, 2N, h, w)
p = self._get_p(offset, dtype)
# (b, h, w, 2N)
p = p.contiguous().permute(0, 2, 3, 1)
q_lt = p.detach().floor()
q_rb = q_lt + 1
q_lt = torch.cat([torch.clamp(q_lt[..., :N], 0, x.size(2)-1), torch.clamp(q_lt[..., N:], 0, x.size(3)-1)], dim=-1).long()
q_rb = torch.cat([torch.clamp(q_rb[..., :N], 0, x.size(2)-1), torch.clamp(q_rb[..., N:], 0, x.size(3)-1)], dim=-1).long()
q_lb = torch.cat([q_lt[..., :N], q_rb[..., N:]], dim=-1)
q_rt = torch.cat([q_rb[..., :N], q_lt[..., N:]], dim=-1)
# clip p
p = torch.cat([torch.clamp(p[..., :N], 0, x.size(2)-1), torch.clamp(p[..., N:], 0, x.size(3)-1)], dim=-1)
# bilinear kernel (b, h, w, N)
g_lt = (1 + (q_lt[..., :N].type_as(p) - p[..., :N])) * (1 + (q_lt[..., N:].type_as(p) - p[..., N:]))
g_rb = (1 - (q_rb[..., :N].type_as(p) - p[..., :N])) * (1 - (q_rb[..., N:].type_as(p) - p[..., N:]))
g_lb = (1 + (q_lb[..., :N].type_as(p) - p[..., :N])) * (1 - (q_lb[..., N:].type_as(p) - p[..., N:]))
g_rt = (1 - (q_rt[..., :N].type_as(p) - p[..., :N])) * (1 + (q_rt[..., N:].type_as(p) - p[..., N:]))
# (b, c, h, w, N)
x_q_lt = self._get_x_q(x, q_lt, N)
x_q_rb = self._get_x_q(x, q_rb, N)
x_q_lb = self._get_x_q(x, q_lb, N)
x_q_rt = self._get_x_q(x, q_rt, N)
# (b, c, h, w, N)
x_offset = g_lt.unsqueeze(dim=1) * x_q_lt + \
g_rb.unsqueeze(dim=1) * x_q_rb + \
g_lb.unsqueeze(dim=1) * x_q_lb + \
g_rt.unsqueeze(dim=1) * x_q_rt
# modulation
if self.modulation:
m = m.contiguous().permute(0, 2, 3, 1)
m = m.unsqueeze(dim=1)
m = torch.cat([m for _ in range(x_offset.size(1))], dim=1)
x_offset *= m
x_offset = self._reshape_x_offset(x_offset, ks)
out = self.conv(x_offset)
return out
def _get_p_n(self, N, dtype):
p_n_x, p_n_y = torch.meshgrid(
torch.arange(-(self.kernel_size-1)//2, (self.kernel_size-1)//2+1),
torch.arange(-(self.kernel_size-1)//2, (self.kernel_size-1)//2+1))
# (2N, 1)
p_n = torch.cat([torch.flatten(p_n_x), torch.flatten(p_n_y)], 0)
p_n = p_n.view(1, 2*N, 1, 1).type(dtype)
return p_n
def _get_p_0(self, h, w, N, dtype):
p_0_x, p_0_y = torch.meshgrid(
torch.arange(1, h*self.stride+1, self.stride),
torch.arange(1, w*self.stride+1, self.stride))
p_0_x = torch.flatten(p_0_x).view(1, 1, h, w).repeat(1, N, 1, 1)
p_0_y = torch.flatten(p_0_y).view(1, 1, h, w).repeat(1, N, 1, 1)
p_0 = torch.cat([p_0_x, p_0_y], 1).type(dtype)
return p_0
def _get_p(self, offset, dtype):
N, h, w = offset.size(1)//2, offset.size(2), offset.size(3)
# (1, 2N, 1, 1)
p_n = self._get_p_n(N, dtype)
# (1, 2N, h, w)
p_0 = self._get_p_0(h, w, N, dtype)
p = p_0 + p_n + offset
return p
def _get_x_q(self, x, q, N):
b, h, w, _ = q.size()
padded_w = x.size(3)
c = x.size(1)
# (b, c, h*w)
x = x.contiguous().view(b, c, -1)
# (b, h, w, N)
index = q[..., :N]*padded_w + q[..., N:] # offset_x*w + offset_y
# (b, c, h*w*N)
index = index.contiguous().unsqueeze(dim=1).expand(-1, c, -1, -1, -1).contiguous().view(b, c, -1)
x_offset = x.gather(dim=-1, index=index).contiguous().view(b, c, h, w, N)
return x_offset
@staticmethod
def _reshape_x_offset(x_offset, ks):
b, c, h, w, N = x_offset.size()
x_offset = torch.cat([x_offset[..., s:s+ks].contiguous().view(b, c, h, w*ks) for s in range(0, N, ks)], dim=-1)
x_offset = x_offset.contiguous().view(b, c, h*ks, w*ks)
return x_offset
class GAP(nn.Module):
def __init__(self):
super(GAP, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
def forward(self, x):
#b, c, _, _ = x.size()
return self.avg_pool(x)#.view(b, c)
class Silence(nn.Module):
def __init__(self):
super(Silence, self).__init__()
def forward(self, x):
return x
class ScaleChannel(nn.Module): # weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
def __init__(self, layers):
super(ScaleChannel, self).__init__()
self.layers = layers # layer indices
def forward(self, x, outputs):
a = outputs[self.layers[0]]
return x.expand_as(a) * a
class ShiftChannel(nn.Module): # weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
def __init__(self, layers):
super(ShiftChannel, self).__init__()
self.layers = layers # layer indices
def forward(self, x, outputs):
a = outputs[self.layers[0]]
return a.expand_as(x) + x
class ShiftChannel2D(nn.Module): # weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
def __init__(self, layers):
super(ShiftChannel2D, self).__init__()
self.layers = layers # layer indices
def forward(self, x, outputs):
a = outputs[self.layers[0]].view(1,-1,1,1)
return a.expand_as(x) + x
class ControlChannel(nn.Module): # weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
def __init__(self, layers):
super(ControlChannel, self).__init__()
self.layers = layers # layer indices
def forward(self, x, outputs):
a = outputs[self.layers[0]]
return a.expand_as(x) * x
class ControlChannel2D(nn.Module): # weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
def __init__(self, layers):
super(ControlChannel2D, self).__init__()
self.layers = layers # layer indices
def forward(self, x, outputs):
a = outputs[self.layers[0]].view(1,-1,1,1)
return a.expand_as(x) * x
class AlternateChannel(nn.Module): # weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
def __init__(self, layers):
super(AlternateChannel, self).__init__()
self.layers = layers # layer indices
def forward(self, x, outputs):
a = outputs[self.layers[0]]
return torch.cat([a.expand_as(x), x], dim=1)
class AlternateChannel2D(nn.Module): # weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
def __init__(self, layers):
super(AlternateChannel2D, self).__init__()
self.layers = layers # layer indices
def forward(self, x, outputs):
a = outputs[self.layers[0]].view(1,-1,1,1)
return torch.cat([a.expand_as(x), x], dim=1)
class SelectChannel(nn.Module): # weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
def __init__(self, layers):
super(SelectChannel, self).__init__()
self.layers = layers # layer indices
def forward(self, x, outputs):
a = outputs[self.layers[0]]
return a.sigmoid().expand_as(x) * x
class SelectChannel2D(nn.Module): # weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
def __init__(self, layers):
super(SelectChannel2D, self).__init__()
self.layers = layers # layer indices
def forward(self, x, outputs):
a = outputs[self.layers[0]].view(1,-1,1,1)
return a.sigmoid().expand_as(x) * x
class ScaleSpatial(nn.Module): # weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
def __init__(self, layers):
super(ScaleSpatial, self).__init__()
self.layers = layers # layer indices
def forward(self, x, outputs):
a = outputs[self.layers[0]]
return x * a
class ImplicitA(nn.Module):
def __init__(self, channel):
super(ImplicitA, self).__init__()
self.channel = channel
self.implicit = nn.Parameter(torch.zeros(1, channel, 1, 1))
nn.init.normal_(self.implicit, std=.02)
def forward(self):
return self.implicit
class ImplicitC(nn.Module):
def __init__(self, channel):
super(ImplicitC, self).__init__()
self.channel = channel
self.implicit = nn.Parameter(torch.zeros(1, channel, 1, 1))
nn.init.normal_(self.implicit, std=.02)
def forward(self):
return self.implicit
class ImplicitM(nn.Module):
def __init__(self, channel):
super(ImplicitM, self).__init__()
self.channel = channel
self.implicit = nn.Parameter(torch.ones(1, channel, 1, 1))
nn.init.normal_(self.implicit, mean=1., std=.02)
def forward(self):
return self.implicit
class Implicit2DA(nn.Module):
def __init__(self, atom, channel):
super(Implicit2DA, self).__init__()
self.channel = channel
self.implicit = nn.Parameter(torch.zeros(1, atom, channel, 1))
nn.init.normal_(self.implicit, std=.02)
def forward(self):
return self.implicit
class Implicit2DC(nn.Module):
def __init__(self, atom, channel):
super(Implicit2DC, self).__init__()
self.channel = channel
self.implicit = nn.Parameter(torch.zeros(1, atom, channel, 1))
nn.init.normal_(self.implicit, std=.02)
def forward(self):
return self.implicit
class Implicit2DM(nn.Module):
def __init__(self, atom, channel):
super(Implicit2DM, self).__init__()
self.channel = channel
self.implicit = nn.Parameter(torch.ones(1, atom, channel, 1))
nn.init.normal_(self.implicit, mean=1., std=.02)
def forward(self):
return self.implicit