forked from shenweichen/DeepCTR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathxdeepfm.py
70 lines (55 loc) · 3.69 KB
/
xdeepfm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
# -*- coding:utf-8 -*-
"""
Author:
Weichen Shen, [email protected]
Reference:
[1] Lian J, Zhou X, Zhang F, et al. xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems[J]. arXiv preprint arXiv:1803.05170, 2018.(https://arxiv.org/pdf/1803.05170.pdf)
"""
import tensorflow as tf
from ..feature_column import build_input_features, get_linear_logit, input_from_feature_columns
from ..layers.core import PredictionLayer, DNN
from ..layers.interaction import CIN
from ..layers.utils import concat_func, add_func, combined_dnn_input
def xDeepFM(linear_feature_columns, dnn_feature_columns, dnn_hidden_units=(256, 256),
cin_layer_size=(128, 128,), cin_split_half=True, cin_activation='relu', l2_reg_linear=0.00001,
l2_reg_embedding=0.00001, l2_reg_dnn=0, l2_reg_cin=0, seed=1024, dnn_dropout=0,
dnn_activation='relu', dnn_use_bn=False, task='binary'):
"""Instantiates the xDeepFM architecture.
:param linear_feature_columns: An iterable containing all the features used by linear part of the model.
:param dnn_feature_columns: An iterable containing all the features used by deep part of the model.
:param dnn_hidden_units: list,list of positive integer or empty list, the layer number and units in each layer of deep net
:param cin_layer_size: list,list of positive integer or empty list, the feature maps in each hidden layer of Compressed Interaction Network
:param cin_split_half: bool.if set to True, half of the feature maps in each hidden will connect to output unit
:param cin_activation: activation function used on feature maps
:param l2_reg_linear: float. L2 regularizer strength applied to linear part
:param l2_reg_embedding: L2 regularizer strength applied to embedding vector
:param l2_reg_dnn: L2 regularizer strength applied to deep net
:param l2_reg_cin: L2 regularizer strength applied to CIN.
:param seed: integer ,to use as random seed.
:param dnn_dropout: float in [0,1), the probability we will drop out a given DNN coordinate.
:param dnn_activation: Activation function to use in DNN
:param dnn_use_bn: bool. Whether use BatchNormalization before activation or not in DNN
:param task: str, ``"binary"`` for binary logloss or ``"regression"`` for regression loss
:return: A Keras model instance.
"""
features = build_input_features(
linear_feature_columns + dnn_feature_columns)
inputs_list = list(features.values())
linear_logit = get_linear_logit(features, linear_feature_columns, seed=seed, prefix='linear',
l2_reg=l2_reg_linear)
sparse_embedding_list, dense_value_list = input_from_feature_columns(features, dnn_feature_columns,
l2_reg_embedding, seed)
fm_input = concat_func(sparse_embedding_list, axis=1)
dnn_input = combined_dnn_input(sparse_embedding_list, dense_value_list)
dnn_output = DNN(dnn_hidden_units, dnn_activation, l2_reg_dnn, dnn_dropout, dnn_use_bn, seed=seed)(dnn_input)
dnn_logit = tf.keras.layers.Dense(
1, use_bias=False, kernel_initializer=tf.keras.initializers.glorot_normal(seed))(dnn_output)
final_logit = add_func([linear_logit, dnn_logit])
if len(cin_layer_size) > 0:
exFM_out = CIN(cin_layer_size, cin_activation,
cin_split_half, l2_reg_cin, seed)(fm_input)
exFM_logit = tf.keras.layers.Dense(1, kernel_initializer=tf.keras.initializers.glorot_normal(seed))(exFM_out)
final_logit = add_func([final_logit, exFM_logit])
output = PredictionLayer(task)(final_logit)
model = tf.keras.models.Model(inputs=inputs_list, outputs=output)
return model