forked from micropython/micropython
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path__tan.c
110 lines (106 loc) · 3.87 KB
/
__tan.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
/* origin: FreeBSD /usr/src/lib/msun/src/k_tan.c */
/*
* ====================================================
* Copyright 2004 Sun Microsystems, Inc. All Rights Reserved.
*
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* __tan( x, y, k )
* kernel tan function on ~[-pi/4, pi/4] (except on -0), pi/4 ~ 0.7854
* Input x is assumed to be bounded by ~pi/4 in magnitude.
* Input y is the tail of x.
* Input odd indicates whether tan (if odd = 0) or -1/tan (if odd = 1) is returned.
*
* Algorithm
* 1. Since tan(-x) = -tan(x), we need only to consider positive x.
* 2. Callers must return tan(-0) = -0 without calling here since our
* odd polynomial is not evaluated in a way that preserves -0.
* Callers may do the optimization tan(x) ~ x for tiny x.
* 3. tan(x) is approximated by a odd polynomial of degree 27 on
* [0,0.67434]
* 3 27
* tan(x) ~ x + T1*x + ... + T13*x
* where
*
* |tan(x) 2 4 26 | -59.2
* |----- - (1+T1*x +T2*x +.... +T13*x )| <= 2
* | x |
*
* Note: tan(x+y) = tan(x) + tan'(x)*y
* ~ tan(x) + (1+x*x)*y
* Therefore, for better accuracy in computing tan(x+y), let
* 3 2 2 2 2
* r = x *(T2+x *(T3+x *(...+x *(T12+x *T13))))
* then
* 3 2
* tan(x+y) = x + (T1*x + (x *(r+y)+y))
*
* 4. For x in [0.67434,pi/4], let y = pi/4 - x, then
* tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y))
* = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y)))
*/
#include "libm.h"
static const double T[] = {
3.33333333333334091986e-01, /* 3FD55555, 55555563 */
1.33333333333201242699e-01, /* 3FC11111, 1110FE7A */
5.39682539762260521377e-02, /* 3FABA1BA, 1BB341FE */
2.18694882948595424599e-02, /* 3F9664F4, 8406D637 */
8.86323982359930005737e-03, /* 3F8226E3, E96E8493 */
3.59207910759131235356e-03, /* 3F6D6D22, C9560328 */
1.45620945432529025516e-03, /* 3F57DBC8, FEE08315 */
5.88041240820264096874e-04, /* 3F4344D8, F2F26501 */
2.46463134818469906812e-04, /* 3F3026F7, 1A8D1068 */
7.81794442939557092300e-05, /* 3F147E88, A03792A6 */
7.14072491382608190305e-05, /* 3F12B80F, 32F0A7E9 */
-1.85586374855275456654e-05, /* BEF375CB, DB605373 */
2.59073051863633712884e-05, /* 3EFB2A70, 74BF7AD4 */
},
pio4 = 7.85398163397448278999e-01, /* 3FE921FB, 54442D18 */
pio4lo = 3.06161699786838301793e-17; /* 3C81A626, 33145C07 */
double __tan(double x, double y, int odd)
{
double_t z, r, v, w, s, a;
double w0, a0;
uint32_t hx;
int big, sign;
GET_HIGH_WORD(hx,x);
big = (hx&0x7fffffff) >= 0x3FE59428; /* |x| >= 0.6744 */
if (big) {
sign = hx>>31;
if (sign) {
x = -x;
y = -y;
}
x = (pio4 - x) + (pio4lo - y);
y = 0.0;
}
z = x * x;
w = z * z;
/*
* Break x^5*(T[1]+x^2*T[2]+...) into
* x^5(T[1]+x^4*T[3]+...+x^20*T[11]) +
* x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12]))
*/
r = T[1] + w*(T[3] + w*(T[5] + w*(T[7] + w*(T[9] + w*T[11]))));
v = z*(T[2] + w*(T[4] + w*(T[6] + w*(T[8] + w*(T[10] + w*T[12])))));
s = z * x;
r = y + z*(s*(r + v) + y) + s*T[0];
w = x + r;
if (big) {
s = 1 - 2*odd;
v = s - 2.0 * (x + (r - w*w/(w + s)));
return sign ? -v : v;
}
if (!odd)
return w;
/* -1.0/(x+r) has up to 2ulp error, so compute it accurately */
w0 = w;
SET_LOW_WORD(w0, 0);
v = r - (w0 - x); /* w0+v = r+x */
a0 = a = -1.0 / w;
SET_LOW_WORD(a0, 0);
return a0 + a*(1.0 + a0*w0 + a0*v);
}