forked from pamela-project/slambench
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathslamlog.py
266 lines (210 loc) · 9.55 KB
/
slamlog.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
#!/usr/bin/python2
import os
import time
import re
import math
import numpy as np
from utils import *
LIBRARY_NAME_PROPERTY = "load-slam-library"
PROPERTIES_SECTION = "Properties"
STATISTICS_SECTION = "Statistics"
FRAME_NUMBER_COLUMN = "Frame Number"
ATE_COLUMN = "AbsoluteError"
CPU_MEMORY_COLUMN = "CPU_Memory"
DURATION_COLUMN = "Duration_Frame"
FPS_COLUMN = "FPS"
MAX_FIELD = "MAX"
MIN_FIELD = "MIN"
MEAN_FIELD = "MEAN"
COUNT_FIELD = "COUNT"
MEDIAN_FIELD = "MEDIAN"
MAX_SUFFIX = "_MAX"
MIN_SUFFIX = "_MIN"
MEAN_SUFFIX = "_MEAN"
COUNT_SUFFIX = "_COUNT"
MEDIAN_SUFFIX = "_MEDIAN"
#############################################################################################
######## PARSERS
#############################################################################################
def load_data_from_input_dirs ( input_dirs ) :
filelist = []
for dirname in input_dirs :
try :
filelist += [os.path.join(dirname, f) for f in os.listdir(dirname) if f[-4:] == ".log" and os.path.isfile(os.path.join(dirname, f))]
except OSError :
printerr("Working directory %s not found.\n" % dirname )
return None
printinfo("%d files to load ...\n" % len(filelist))
data = load_data_from_files (filelist)
return data
def load_data_from_file(filename) :
start_time = time.time()
f = open(filename)
raw = f.read()
f.close()
inside = None
headers = None
data = {"date" : None , STATISTICS_SECTION : {} , PROPERTIES_SECTION : {}}
lines = raw.split("\n")
load_time = time.time()
for line in lines :
if line == "Process every frame mode enabled" :
continue
if line[0:len("SLAMBench Report run started:")] == "SLAMBench Report run started:" :
matching_header = re.match("SLAMBench Report run started:\s+(.*)",line)
assert(matching_header)
data["date"] = str(matching_header.group(1))
continue
if re.match(PROPERTIES_SECTION + ":",line) :
inside = PROPERTIES_SECTION
continue
if re.match(STATISTICS_SECTION + ":",line) :
inside = STATISTICS_SECTION
continue
if line == "" :
continue
if re.match("=+",line) :
if inside != None :
continue
else :
printerr ("Error unknow section.\n")
return None
if inside == PROPERTIES_SECTION :
matching_arguments = re.match("\s*(.*):\s+(.*)\s*",line)
if matching_arguments :
data[PROPERTIES_SECTION][matching_arguments.group(1)] = matching_arguments.group(2)
continue
if inside == STATISTICS_SECTION :
matching_fields = line.split("\t")
if matching_fields :
if headers and len(headers) == len(matching_fields):
for i in xrange (len(matching_fields)) :
current_value = float("NaN")
try :
current_value = float(matching_fields[i])
except ValueError:
current_value = float("NaN")
data[STATISTICS_SECTION][headers[i]] += [current_value]
#if math.isnan(float(matching_fields[i])) :
# printerr ( INVALID + " %s : Error while parsing the file, NaN found.\n" % filename )
# return None
continue
else :
if headers :
printerr ("New \n")
headers = matching_fields[:]
for k in headers :
if not k in data[STATISTICS_SECTION].keys():
data[STATISTICS_SECTION][k] = []
continue
printerr ("[load_data_from_file('%s')] Error line not parsed inside '%s': '%s'\n" % (filename,inside,line))
return None
loop_time = time.time()
if headers == None :
return None
#print "load = %f" % (1000 * (load_time - start_time) )
#print "loop = %f" % (1000 * (loop_time - load_time) )
return data
def turn_data_to_stats(data) :
stats = {}
if not data or not STATISTICS_SECTION in data.keys() :
printerr("no data or no STATISTICS_SECTION in data.keys()\n")
return None
if not FRAME_NUMBER_COLUMN in data[STATISTICS_SECTION].keys() :
printerr("no '%s' in data[STATISTICS_SECTION].keys()\n" % FRAME_NUMBER_COLUMN )
printerr("data[STATISTICS_SECTION].keys() = %s\n" % data[STATISTICS_SECTION].keys() )
return None
frame_count = len(data[STATISTICS_SECTION][FRAME_NUMBER_COLUMN])
last_algorithm_name = None
## FIRST PASS TO FIND ALGO SPECIFIC FIELDS
for k in data[STATISTICS_SECTION].keys() :
matching_key = re.match("^((.+)-)?(.+)$",k)
if not matching_key :
printerr ("Error with '%s' does not match any known field names.\n" % k)
printerr ("Statistics header was :\n%s\n" % data[STATISTICS_SECTION].keys() )
return None
algorithm_name = matching_key.group(2)
row_name = matching_key.group(3)
if not algorithm_name and not row_name in ["Frame Number", "Timestamp"] :
algorithm_name = "unnamed"
if (algorithm_name) :
if not algorithm_name in stats.keys() :
stats[algorithm_name] = {}
if not row_name in stats[algorithm_name].keys() :
stats[algorithm_name][row_name] = {}
valid_numbers = [ x for x in data[STATISTICS_SECTION][k] if not math.isnan(float(x)) ]
if len(valid_numbers) > 0 :
stats[algorithm_name][row_name] = {
COUNT_FIELD: len(valid_numbers),
MIN_FIELD: min(valid_numbers),
MAX_FIELD: max(valid_numbers),
MEDIAN_FIELD: np.median(valid_numbers),
MEAN_FIELD: np.mean(valid_numbers)
}
else :
stats[algorithm_name][row_name] = {
COUNT_FIELD: len(valid_numbers),
MIN_FIELD: float("NaN"),
MAX_FIELD: float("NaN"),
MEDIAN_FIELD: float("NaN"),
MEAN_FIELD: float("NaN"),
}
if not last_algorithm_name :
last_algorithm_name = algorithm_name
else :
if algorithm_name != last_algorithm_name :
printerr ("More than one algo used, current algorithm name is '%s', new algorithm name is '%s' unsupported case." % ( last_algorithm_name, algorithm_name ) )
exit(1)
return stats
def load_data_from_files (filelist) :
data = {}
for filename in filelist :
start_time = time.time()
temp = load_data_from_file(filename)
load_time = (time.time() - start_time) * 1000
if temp and STATISTICS_SECTION in temp.keys()and PROPERTIES_SECTION in temp.keys() :
stats = turn_data_to_stats(temp)
if not "input" in temp[PROPERTIES_SECTION].keys() :
printerr (" %s : input argument not found.\n" % filename )
continue
dataset = temp[PROPERTIES_SECTION]["input"]
#dataset = dataset.split("/")[-1]
libraryname = temp[PROPERTIES_SECTION][LIBRARY_NAME_PROPERTY]
if stats == None :
printerr (" %s : stats == None.\n" % filename )
continue
if len(stats.keys()) != 1 :
printerr("This file has more than one algorithm or no algorithm\n")
continue
if not libraryname in data.keys() :
data[libraryname] = {}
if not dataset in data[libraryname].keys() :
data[libraryname][dataset] = []
data[libraryname][dataset] += [{PROPERTIES_SECTION : temp[PROPERTIES_SECTION] , "date" : temp["date"], STATISTICS_SECTION : stats.values()[0]}]
printinfo (" %s loaded in %f ms : len of stats = %d\n" % (filename,load_time,len(stats.keys())))
else :
printerr (" %s : Error while loading the file. \n" % (filename))
return data
def flat_data (data_array, Xcols, Ycols) :
main = {}
for run in data_array :
wee = {}
for col in run[PROPERTIES_SECTION] :
if col in Xcols :
wee[col] = run[PROPERTIES_SECTION][col]
for col in run[STATISTICS_SECTION] :
for subcol in run[STATISTICS_SECTION][col].keys() :
if col + "_" + subcol in Ycols :
wee[col + "_" + subcol] = run[STATISTICS_SECTION][col][subcol]
if len(main.keys()) != 0 and len(main.keys()) != len(wee.keys()) :
printerr("Invalid datapoint.\n")
exit(1)
for x in Xcols + Ycols :
if not x in wee.keys() :
printerr("%s not found in the log.\n" % x)
exit(1)
for row in wee.keys() :
if not row in main :
main [row] = []
main [row] += [wee[row]]
return main