forked from pharmaverse/admiral
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbds_finding.Rmd
1138 lines (940 loc) · 33.9 KB
/
bds_finding.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
---
title: "Creating a BDS Finding ADaM"
output:
rmarkdown::html_vignette
vignette: >
%\VignetteIndexEntry{Creating a BDS Finding ADaM}
%\VignetteEngine{knitr::rmarkdown}
%\VignetteEncoding{UTF-8}
---
```{r setup, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
library(admiraldev)
```
# Introduction
This article describes creating a BDS finding ADaM. Examples are currently
presented and tested in the context of ADVS. However, the examples could be
applied to other BDS Finding ADaMs such as ADEG, ADLB, etc. where a single
result is captured in an SDTM Finding domain on a single date and/or time.
**Note**: *All examples assume CDISC SDTM and/or ADaM format as input unless
otherwise specified.*
# Programming Workflow
* [Read in Data](#readdata)
* [Derive/Impute Numeric Date/Time and Analysis Day (`ADT`, `ADTM`, `ADY`, `ADTF`, `ATMF`)](#datetime)
* [Assign `PARAMCD`, `PARAM`, `PARAMN`, `PARCAT1`](#paramcd)
* [Derive Results (`AVAL`, `AVALC`)](#aval)
* [Derive Additional Parameters (e.g. `BSA`, `BMI`, or `MAP` for `ADVS`)](#derive_param)
* [Derive Timing Variables (e.g. `APHASE`, `AVISIT`, `APERIOD`)](#timing)
* [Timing Flag Variables (e.g. `ONTRTFL`)](#timingflag)
* [Assign Reference Range Indicator (`ANRIND`)](#referencerange)
* [Derive Baseline (`BASETYPE`, `ABLFL`, `BASE`, `BASEC`, `BNRIND`)](#baseline)
* [Derive Change from Baseline (`CHG`, `PCHG`)](#bchange)
* [Derive Shift (e.g.`SHIFT1`)](#shift)
* [Derive Analysis Ratio (e.g. `R2BASE`)](#analysisratio)
* [Derive Analysis Flags (e.g. `ANL01FL`)](#analysisrec)
* [Assign Treatment (`TRTA`, `TRTP`)](#treatment)
* [Assign `ASEQ`](#aseq)
* [Derive Categorization Variables (`AVALCATx`)](#cat)
* [Derive Criterion Variables (`CRITy`, `CRITyFL`, `CRITyFLN`)](#crit_vars)
* [Add ADSL variables](#adsl_vars)
* [Derive New Rows](#additional)
* [Add Labels and Attributes](#attributes)
## Read in Data {#readdata}
To start, all data frames needed for the creation of `ADVS` should be read into
the environment. This will be a company specific process. Some of the
data frames needed may be `VS` and `ADSL`.
For example purpose, the CDISC Pilot SDTM and ADaM datasets---which are included in `{pharmaversesdtm}`---are used.
```{r message=FALSE}
library(admiral)
library(dplyr, warn.conflicts = FALSE)
library(pharmaversesdtm)
library(lubridate)
library(stringr)
library(tibble)
data("admiral_adsl")
data("vs")
adsl <- admiral_adsl
vs <- convert_blanks_to_na(vs)
```
```{r echo=FALSE}
vs <- filter(vs, USUBJID %in% c("01-701-1015", "01-701-1023", "01-703-1086", "01-703-1096", "01-707-1037", "01-716-1024"))
```
At this step, it may be useful to join `ADSL` to your `VS` domain. Only the
`ADSL` variables used for derivations are selected at this step. The rest of the
relevant `ADSL` variables would be added later.
```{r eval=TRUE}
adsl_vars <- exprs(TRTSDT, TRTEDT, TRT01A, TRT01P)
advs <- derive_vars_merged(
vs,
dataset_add = adsl,
new_vars = adsl_vars,
by_vars = exprs(STUDYID, USUBJID)
)
```
```{r, eval=TRUE, echo=FALSE}
dataset_vignette(
advs,
display_vars = exprs(USUBJID, VSTESTCD, VSDTC, VISIT, TRTSDT, TRTEDT, TRT01A, TRT01P),
filter = VSTESTCD == "DIABP" & VISIT == "WEEK 2"
)
```
## Derive/Impute Numeric Date/Time and Analysis Day (`ADT`, `ADTM`, `ADY`, `ADTF`, `ATMF`) {#datetime}
The function `derive_vars_dt()` can be used to derive `ADT`. This function allows
the user to impute the date as well.
Example calls:
```{r eval=TRUE}
advs <- derive_vars_dt(advs, new_vars_prefix = "A", dtc = VSDTC)
```
```{r, eval=TRUE, echo=FALSE}
dataset_vignette(
advs,
display_vars = exprs(USUBJID, VISIT, VSDTC, ADT),
filter = VSTESTCD == "DIABP"
)
```
If imputation is needed and the date is to be imputed to the first of the month,
the call would be:
```{r eval=TRUE, include=FALSE}
advs_old <- advs
advs <- advs %>%
mutate(
VSDTC = if_else(
USUBJID == "01-716-1024" & VISIT == "SCREENING 1",
"2012-07",
VSDTC
)
) %>%
select(-ADT)
```
```{r eval=TRUE}
advs <- derive_vars_dt(
advs,
new_vars_prefix = "A",
dtc = VSDTC,
highest_imputation = "M"
)
```
```{r, eval=TRUE, echo=FALSE}
dataset_vignette(
advs,
display_vars = exprs(USUBJID, VISIT, VSDTC, ADT, ADTF),
filter = USUBJID == "01-716-1024"
)
```
```{r eval=TRUE, echo=FALSE}
advs <- advs_old
```
Similarly, `ADTM` may be created using the function `derive_vars_dtm()`.
Imputation may be done on both the date and time components of `ADTM`.
```{r eval=FALSE}
# CDISC Pilot data does not contain times and the output of the derivation
# ADTM is not presented.
advs <- derive_vars_dtm(
advs,
new_vars_prefix = "A",
dtc = VSDTC,
highest_imputation = "M"
)
```
By default, the variable `ADTF` for `derive_vars_dt()` or `ADTF` and `ATMF` for
`derive_vars_dtm()` will be created and populated with the controlled
terminology outlined in the ADaM IG for date imputations.
See also [Date and Time Imputation](imputation.html).
Once `ADT` is derived, the function `derive_vars_dy()` can be used to derive `ADY`.
This example assumes both `ADT` and `TRTSDT` exist on the data frame.
```{r eval=TRUE}
advs <-
derive_vars_dy(advs, reference_date = TRTSDT, source_vars = exprs(ADT))
```
```{r, eval=TRUE, echo=FALSE}
dataset_vignette(
advs,
display_vars = exprs(USUBJID, VISIT, ADT, ADY, TRTSDT),
filter = USUBJID == "01-716-1024"
)
```
## Assign `PARAMCD`, `PARAM`, `PARAMN`, `PARCAT1` {#paramcd}
To assign parameter level values such as `PARAMCD`, `PARAM`, `PARAMN`, `PARCAT1`,
etc., a lookup can be created to join to the source data.
For example, when creating `ADVS`, a lookup based on the SDTM `--TESTCD` value
may be created:
`VSTESTCD` | `PARAMCD` | `PARAM` | `PARAMN` | `PARCAT1` | `PARCAT1N`
--------- | --------- | -------- | ------- | --------- | ----------
HEIGHT | HEIGHT | Height (cm) | 1 | Subject Characteristic | 1
WEIGHT | WEIGHT | Weight (kg) | 2 | Subject Characteristic | 1
DIABP | DIABP | Diastolic Blood Pressure (mmHg) | 3 | Vital Sign | 2
MAP | MAP | Mean Arterial Pressure | 4 | Vital Sign | 2
PULSE | PULSE | Pulse Rate (beats/min) | 5 | Vital Sign | 2
SYSBP | SYSBP | Systolic Blood Pressure (mmHg) | 6 | Vital Sign | 2
TEMP | TEMP | Temperature (C) | 7 | Vital Sign | 2
This lookup may now be joined to the source data:
```{r eval=TRUE, include=FALSE}
param_lookup <- tribble(
~VSTESTCD, ~PARAMCD, ~PARAM, ~PARAMN, ~PARCAT1, ~PARCAT1N,
"HEIGHT", "HEIGHT", "Height (cm)", 1, "Subject Characteristic", 1,
"WEIGHT", "WEIGHT", "Weight (kg)", 2, "Subject Characteristic", 1,
"DIABP", "DIABP", "Diastolic Blood Pressure (mmHg)", 3, "Vital Sign", 2,
"MAP", "MAP", "Mean Arterial Pressure (mmHg)", 4, "Vital Sign", 2,
"BSA", "BSA", "Body Surface Area (m^2)", 5, "Vital Sign", 2,
"PULSE", "PULSE", "Pulse Rate (beats/min)", 6, "Vital Sign", 2,
"SYSBP", "SYSBP", "Systolic Blood Pressure (mmHg)", 7, "Vital Sign", 2,
"TEMP", "TEMP", "Temperature (C)", 8, "Vital Sign", 2
)
attr(param_lookup$VSTESTCD, "label") <- "Vital Signs Test Short Name"
```
At this stage, only `PARAMCD` is required to perform the derivations. Additional
derived parameters may be added, so only `PARAMCD` is joined to the datasets at
this point. All other variables related to `PARAMCD` (e.g. `PARAM`, `PARAMCAT1`, ...)
will be added when all `PARAMCD` are derived.
```{r eval=TRUE}
advs <- derive_vars_merged_lookup(
advs,
dataset_add = param_lookup,
new_vars = exprs(PARAMCD),
by_vars = exprs(VSTESTCD)
)
```
```{r, eval=TRUE, echo=FALSE}
advs_param <- distinct(advs, USUBJID, PARAMCD, VSTESTCD)
dataset_vignette(advs_param, display_vars = exprs(USUBJID, VSTESTCD, PARAMCD))
```
Please note, it may be necessary to include other variables in the join. For
example, perhaps the `PARAMCD` is based on `VSTESTCD` and `VSPOS`, it may be
necessary to expand this lookup or create a separate look up for `PARAMCD`.
If more than one lookup table, e.g., company parameter mappings and project
parameter mappings, are available, `consolidate_metadata()` can be used to
consolidate these into a single lookup table.
## Derive Results (`AVAL`, `AVALC`) {#aval}
The mapping of `AVAL` and `AVALC` is left to the ADaM programmer. An
example mapping may be:
```{r eval=TRUE}
advs <- mutate(
advs,
AVAL = VSSTRESN
)
```
In this example, as is often the case for ADVS, all `AVAL` values are numeric without any corresponding non-redundant text value for `AVALC`.
Per recommendation in ADaMIG v1.3 we do not map `AVALC`.
```{r, eval=TRUE, echo=FALSE}
dataset_vignette(
advs,
display_vars = exprs(VSTESTCD, PARAMCD, VSSTRESN, VSSTRESC, AVAL),
filter = USUBJID == "01-716-1024"
)
```
## Derive Additional Parameters (e.g. `BSA`, `BMI` or `MAP` for `ADVS`) {#derive_param}
Optionally derive new parameters creating `PARAMCD` and `AVAL`. Note that only
variables specified in the `by_vars` argument will be populated in the newly
created records. This is relevant to the functions `derive_param_map`,
`derive_param_bsa`, `derive_param_bmi`, and `derive_param_qtc`.
Below is an example of creating `Mean Arterial Pressure` for `ADVS`, see also
Example 3 in section below [Derive New Rows](#additional) for alternative way of creating new parameters.
```{r eval=TRUE}
advs <- derive_param_map(
advs,
by_vars = exprs(STUDYID, USUBJID, !!!adsl_vars, VISIT, VISITNUM, ADT, ADY, VSTPT, VSTPTNUM),
set_values_to = exprs(PARAMCD = "MAP"),
get_unit_expr = VSSTRESU,
filter = VSSTAT != "NOT DONE" | is.na(VSSTAT)
)
```
```{r, eval=TRUE, echo=FALSE}
dataset_vignette(
arrange(advs, USUBJID, VISITNUM, VSTPTNUM, ADT, PARAMCD),
display_vars = exprs(VSTESTCD, PARAMCD, VISIT, VSTPT, AVAL),
filter = USUBJID == "01-701-1015" & PARAMCD %in% c("MAP", "DIABP", "SYSBP")
)
```
Likewise, function call below, to create parameter `Body Surface Area` (BSA) and
`Body Mass Index` (BMI) for `ADVS` domain. Note that if height is collected only once use `constant_by_vars` to specify the subject-level variable to merge on. Otherwise BSA and BMI are only calculated for visits where both are collected.
```{r eval=TRUE}
advs <- derive_param_bsa(
advs,
by_vars = exprs(STUDYID, USUBJID, !!!adsl_vars, VISIT, VISITNUM, ADT, ADY, VSTPT, VSTPTNUM),
method = "Mosteller",
set_values_to = exprs(PARAMCD = "BSA"),
get_unit_expr = VSSTRESU,
filter = VSSTAT != "NOT DONE" | is.na(VSSTAT),
constant_by_vars = exprs(USUBJID)
)
advs <- derive_param_bmi(
advs,
by_vars = exprs(STUDYID, USUBJID, !!!adsl_vars, VISIT, VISITNUM, ADT, ADY, VSTPT, VSTPTNUM),
set_values_to = exprs(PARAMCD = "BMI"),
get_unit_expr = VSSTRESU,
filter = VSSTAT != "NOT DONE" | is.na(VSSTAT),
constant_by_vars = exprs(USUBJID)
)
```
```{r, eval=TRUE, echo=FALSE}
dataset_vignette(
arrange(advs, USUBJID, VISITNUM, VSTPTNUM, ADT, PARAMCD),
display_vars = exprs(USUBJID, VSTESTCD, PARAMCD, VISIT, VSTPT, AVAL),
filter = PARAMCD %in% c("BSA", "BMI")
)
```
Similarly, for `ADEG`, the parameters `QTCBF` `QTCBS` and `QTCL` can be
created with a function call. See example below for `PARAMCD` = `QTCF`.
```{r eval=FALSE}
adeg <- tibble::tribble(
~USUBJID, ~EGSTRESU, ~PARAMCD, ~AVAL, ~VISIT,
"P01", "msec", "QT", 350, "CYCLE 1 DAY 1",
"P01", "msec", "QT", 370, "CYCLE 2 DAY 1",
"P01", "msec", "RR", 842, "CYCLE 1 DAY 1",
"P01", "msec", "RR", 710, "CYCLE 2 DAY 1"
)
adeg <- derive_param_qtc(
adeg,
by_vars = exprs(USUBJID, VISIT),
method = "Fridericia",
set_values_to = exprs(PARAMCD = "QTCFR"),
get_unit_expr = EGSTRESU
)
```
Similarly, for `ADLB`, the function `derive_param_wbc_abs()` can be used to create new parameter
for lab differentials converted to absolute values. See example below:
```{r eval=FALSE}
adlb <- tibble::tribble(
~USUBJID, ~PARAMCD, ~AVAL, ~PARAM, ~VISIT,
"P01", "WBC", 33, "Leukocyte Count (10^9/L)", "CYCLE 1 DAY 1",
"P01", "WBC", 38, "Leukocyte Count (10^9/L)", "CYCLE 2 DAY 1",
"P01", "LYMLE", 0.90, "Lymphocytes (fraction of 1)", "CYCLE 1 DAY 1",
"P01", "LYMLE", 0.70, "Lymphocytes (fraction of 1)", "CYCLE 2 DAY 1"
)
derive_param_wbc_abs(
dataset = adlb,
by_vars = exprs(USUBJID, VISIT),
set_values_to = exprs(
PARAMCD = "LYMPH",
PARAM = "Lymphocytes Abs (10^9/L)",
DTYPE = "CALCULATION"
),
get_unit_expr = extract_unit(PARAM),
wbc_code = "WBC",
diff_code = "LYMLE",
diff_type = "fraction"
)
```
When all `PARAMCD` have been derived and added to the dataset, the other information
from the look-up table (`PARAM`, `PARAMCAT1`,...) should be added.
```{r eval=TRUE}
# Derive PARAM and PARAMN
advs <- derive_vars_merged(
advs,
dataset_add = select(param_lookup, -VSTESTCD),
by_vars = exprs(PARAMCD)
)
```
```{r, eval=TRUE, echo=FALSE}
dataset_vignette(
advs,
display_vars = exprs(VSTESTCD, PARAMCD, PARAM, PARAMN, PARCAT1, PARCAT1N),
filter = USUBJID == "01-716-1024"
)
```
## Derive Timing Variables (e.g. `APHASE`, `AVISIT`, `APERIOD`) {#timing}
Categorical timing variables are protocol and analysis dependent. Below is a
simple example.
```{r eval=TRUE}
advs <- advs %>%
mutate(
AVISIT = case_when(
str_detect(VISIT, "SCREEN") ~ NA_character_,
str_detect(VISIT, "UNSCHED") ~ NA_character_,
str_detect(VISIT, "RETRIEVAL") ~ NA_character_,
str_detect(VISIT, "AMBUL") ~ NA_character_,
!is.na(VISIT) ~ str_to_title(VISIT)
),
AVISITN = as.numeric(case_when(
VISIT == "BASELINE" ~ "0",
str_detect(VISIT, "WEEK") ~ str_trim(str_replace(VISIT, "WEEK", ""))
)),
ATPT = VSTPT,
ATPTN = VSTPTNUM
)
count(advs, VISITNUM, VISIT, AVISITN, AVISIT)
count(advs, VSTPTNUM, VSTPT, ATPTN, ATPT)
```
For assigning visits based on time windows and deriving periods, subperiods, and
phase variables see the ["Visit and Period Variables"
vignette](visits_periods.html).
## Timing Flag Variables (e.g. `ONTRTFL`) {#timingflag}
In some analyses, it may be necessary to flag an observation as on-treatment.
The admiral function `derive_var_ontrtfl()` can be used.
For example, if on-treatment is defined as any observation between treatment
start and treatment end, the flag may be derived as:
```{r eval=TRUE}
advs <- derive_var_ontrtfl(
advs,
start_date = ADT,
ref_start_date = TRTSDT,
ref_end_date = TRTEDT
)
```
```{r, eval=TRUE, echo=FALSE}
dataset_vignette(
advs,
display_vars = exprs(USUBJID, PARAMCD, ADT, TRTSDT, TRTEDT, ONTRTFL),
filter = PARAMCD == "DIABP" & VISIT == "WEEK 2"
)
```
This function returns the original data frame with the column `ONTRTFL` added.
Additionally, this function does have functionality to handle a window on the
`ref_end_date`. For example, if on-treatment is defined as between treatment
start and treatment end plus 60 days, the call would be:
```{r include=FALSE}
advs <- select(advs, -ONTRTFL)
```
```{r eval=TRUE}
advs <- derive_var_ontrtfl(
advs,
start_date = ADT,
ref_start_date = TRTSDT,
ref_end_date = TRTEDT,
ref_end_window = 60
)
```
In addition, the function does allow you to filter out pre-treatment observations
that occurred on the start date. For example, if observations with `VSTPT == PRE`
should not be considered on-treatment when the observation date falls between
the treatment start and end date, the user may specify this using the
`filter_pre_timepoint` parameter:
```{r include=FALSE}
advs <- select(advs, -ONTRTFL)
```
```{r eval=TRUE}
advs <- derive_var_ontrtfl(
advs,
start_date = ADT,
ref_start_date = TRTSDT,
ref_end_date = TRTEDT,
filter_pre_timepoint = ATPT == "AFTER LYING DOWN FOR 5 MINUTES"
)
```
Lastly, the function does allow you to create any on-treatment
flag based on the analysis needs. For example, if variable
`ONTR01FL` is needed, showing the on-treatment flag during Period 01,
you need to set `new var = ONTR01FL`. In addition, for Period 01
Start Date and Period 01 End Date, you need `ref_start_date = AP01SDT`
and `ref_end_date = AP01EDT`.
```{r include=FALSE}
advs_pre <- select(advs, -ONTRTFL)
advs <- tibble::tribble(
~USUBJID, ~ASTDT, ~AP01SDT, ~AP01EDT, ~AENDT,
"P01", ymd("2020-03-15"), ymd("2020-01-01"), ymd("2020-03-01"), ymd("2020-12-01"),
"P02", ymd("2019-04-30"), ymd("2020-01-01"), ymd("2020-03-01"), ymd("2020-03-15"),
"P03", ymd("2019-04-30"), ymd("2020-01-01"), ymd("2020-03-01"), NA,
)
```
```{r eval=TRUE}
advs <- derive_var_ontrtfl(
advs,
new_var = ONTR01FL,
start_date = ASTDT,
end_date = AENDT,
ref_start_date = AP01SDT,
ref_end_date = AP01EDT,
span_period = TRUE
)
```
```{r, eval=TRUE, echo=FALSE}
dataset_vignette(
advs,
display_vars = exprs(USUBJID, ASTDT, AENDT, AP01SDT, AP01EDT, ONTR01FL)
)
```
## Assign Reference Range Indicator (`ANRIND`) {#referencerange}
The admiral function `derive_var_anrind()` may be used to derive the reference
range indicator `ANRIND`.
This function requires the reference range boundaries to exist on the data frame
(`ANRLO`, `ANRHI`) and also accommodates the additional boundaries `A1LO` and `A1HI`.
```{r include=FALSE}
range_lookup <- tibble::tribble(
~PARAMCD, ~ANRLO, ~ANRHI, ~A1LO, ~A1HI,
"SYSBP", 90, 130, 70, 140,
"DIABP", 60, 80, 40, 90,
"PULSE", 60, 100, 40, 110,
"TEMP", 36.5, 37.5, 35, 38
)
advs <- derive_vars_merged(
advs_pre,
dataset_add = range_lookup,
by_vars = exprs(PARAMCD)
)
```
The function is called as:
```{r eval=TRUE}
advs <- derive_var_anrind(advs)
```
```{r, eval=TRUE, echo=FALSE}
dataset_vignette(
advs,
display_vars = exprs(USUBJID, PARAMCD, AVAL, ANRLO, ANRHI, A1LO, A1HI, ANRIND),
filter = PARAMCD == "DIABP" & VISIT == "WEEK 2"
)
```
## Derive Baseline (`BASETYPE`, `ABLFL`, `BASE`, `BNRIND`) {#baseline}
The `BASETYPE` should be derived using the function `derive_basetype_records()`.
The parameter `basetypes` of this function requires a named list of expression
detailing how the `BASETYPE` should be assigned. Note, if a record falls into
multiple expressions within the basetypes expression, a row will be produced for
each `BASETYPE`.
```{r eval=TRUE}
advs <- derive_basetype_records(
dataset = advs,
basetypes = exprs(
"LAST: AFTER LYING DOWN FOR 5 MINUTES" = ATPTN == 815,
"LAST: AFTER STANDING FOR 1 MINUTE" = ATPTN == 816,
"LAST: AFTER STANDING FOR 3 MINUTES" = ATPTN == 817,
"LAST" = is.na(ATPTN)
)
)
count(advs, ATPT, ATPTN, BASETYPE)
```
It is important to derive `BASETYPE` first so that it can be utilized in
subsequent derivations. This will be important if the data frame contains
multiple values for `BASETYPE`.
Next, the analysis baseline flag `ABLFL` can be derived using the `{admiral}`
function `derive_var_extreme_flag()`. For example, if baseline is defined as the last
non-missing `AVAL` prior or on `TRTSDT`, the function call for `ABLFL` would be:
```{r eval=TRUE}
advs <- restrict_derivation(
advs,
derivation = derive_var_extreme_flag,
args = params(
by_vars = exprs(STUDYID, USUBJID, BASETYPE, PARAMCD),
order = exprs(ADT, ATPTN, VISITNUM),
new_var = ABLFL,
mode = "last"
),
filter = (!is.na(AVAL) & ADT <= TRTSDT & !is.na(BASETYPE))
)
```
```{r, eval=TRUE, echo=FALSE}
dataset_vignette(
advs,
display_vars = exprs(USUBJID, BASETYPE, PARAMCD, ADT, TRTSDT, ATPTN, TRTSDT, ABLFL),
filter = PARAMCD == "DIABP" & VISIT %in% c("WEEK 2", "BASELINE")
)
```
Note: Additional examples of the `derive_var_extreme_flag()` function can be
found [above.](#analysisrec)
Lastly, the `BASE`, and `BNRIND` columns can be derived using the `{admiral}` function
`derive_var_base()`. Example calls are:
```{r eval=TRUE}
advs <- derive_var_base(
advs,
by_vars = exprs(STUDYID, USUBJID, PARAMCD, BASETYPE),
source_var = AVAL,
new_var = BASE
)
advs <- derive_var_base(
advs,
by_vars = exprs(STUDYID, USUBJID, PARAMCD, BASETYPE),
source_var = ANRIND,
new_var = BNRIND
)
```
```{r, eval=TRUE, echo=FALSE}
dataset_vignette(
advs,
display_vars = exprs(USUBJID, BASETYPE, PARAMCD, ABLFL, BASE, ANRIND, BNRIND),
filter = PARAMCD == "DIABP" & VISIT %in% c("WEEK 2", "BASELINE")
)
```
## Derive Change from Baseline (`CHG`, `PCHG`) {#bchange}
Change and percent change from baseline can be derived using the `{admiral}`
functions `derive_var_chg()` and `derive_var_pchg()`. These functions expect `AVAL`
and `BASE` to exist in the data frame. The `CHG` is simply `AVAL - BASE` and the
`PCHG` is `(AVAL - BASE) / absolute value (BASE) * 100`. Examples calls are:
```{r eval=TRUE}
advs <- derive_var_chg(advs)
advs <- derive_var_pchg(advs)
```
```{r, eval=TRUE, echo=FALSE}
dataset_vignette(
advs,
display_vars = exprs(USUBJID, VISIT, BASE, AVAL, CHG, PCHG),
filter = PARAMCD == "DIABP" & VISIT %in% c("WEEK 2", "WEEK 8")
)
```
If the variables should not be derived for all records, e.g., for post-baseline
records only, `restrict_derivation()` can be used.
## Derive Shift (e.g. `SHIFT1`) {#shift}
Shift variables can be derived using the `{admiral}` function `derive_var_shift()`.
This function derives a character shift variable concatenating shift in values based on a
user-defined pairing, e.g., shift from baseline reference range `BNRIND`
to analysis reference range `ANRIND`. Examples calls are:
```{r eval=TRUE}
advs <- derive_var_shift(advs,
new_var = SHIFT1,
from_var = BNRIND,
to_var = ANRIND
)
```
If the variables should not be derived for all records, e.g., for post-baseline
records only, `restrict_derivation()` can be used.
## Derive Analysis Ratio (`R2BASE`) {#analysisratio}
Analysis ratio variables can be derived using the `{admiral}` function
`derive_var_analysis_ratio()`. This function derives a ratio variable based on user-specified pair.
For example, Ratio to Baseline is calculated by `AVAL / BASE` and the function appends a new
variable `R2BASE` to the dataset. Examples calls are:
```{r eval=TRUE}
advs <- derive_var_analysis_ratio(advs,
numer_var = AVAL,
denom_var = BASE
)
advs <- derive_var_analysis_ratio(advs,
numer_var = AVAL,
denom_var = ANRLO,
new_var = R01ANRLO
)
```
```{r, eval=TRUE, echo=FALSE}
dataset_vignette(
advs,
display_vars = exprs(USUBJID, VISIT, BASE, AVAL, ANRLO, R2BASE, R01ANRLO),
filter = PARAMCD == "DIABP" & VISIT %in% c("WEEK 2", "WEEK 8")
)
```
If the variables should not be derived for all records, e.g., for post-baseline
records only, `restrict_derivation()` can be used.
## Derive Analysis Flags (e.g. `ANL01FL`) {#analysisrec}
In most finding ADaMs, an analysis flag is derived to identify the appropriate
observation(s) to use for a particular analysis when a subject has multiple
observations within a particular timing period.
In this situation, an analysis flag (e.g. `ANLxxFL`) may be used to choose the
appropriate record for analysis.
This flag may be derived using the `{admiral}` function `derive_var_extreme_flag()`.
For this example, we will assume we would like to choose the latest and
highest value by `USUBJID`, `PARAMCD`, `AVISIT`, and `ATPT`.
```{r eval=TRUE}
advs <- restrict_derivation(
advs,
derivation = derive_var_extreme_flag,
args = params(
by_vars = exprs(STUDYID, USUBJID, BASETYPE, PARAMCD, AVISIT),
order = exprs(ADT, ATPTN, AVAL),
new_var = ANL01FL,
mode = "last"
),
filter = !is.na(AVISITN)
)
```
```{r, eval=TRUE, echo=FALSE}
dataset_vignette(
advs,
display_vars = exprs(USUBJID, PARAMCD, AVISIT, ATPTN, ADT, AVAL, ANL01FL),
filter = PARAMCD == "DIABP" & VISIT %in% c("WEEK 2", "WEEK 8")
)
```
Another common example would be flagging the worst value for a subject,
parameter, and visit. For this example, we will assume we have 3 `PARAMCD`
values (`SYSBP`, `DIABP`, and `RESP`). We will also assume high is worst for `SYSBP`
and `DIABP` and low is worst for `RESP`.
```{r eval=TRUE}
advs <- slice_derivation(
advs,
derivation = derive_var_extreme_flag,
args = params(
by_vars = exprs(STUDYID, USUBJID, BASETYPE, PARAMCD, AVISIT),
order = exprs(ADT, ATPTN),
new_var = WORSTFL,
mode = "first"
),
derivation_slice(
filter = PARAMCD %in% c("SYSBP", "DIABP") & (!is.na(AVISIT) & !is.na(AVAL))
),
derivation_slice(
filter = PARAMCD %in% "PULSE" & (!is.na(AVISIT) & !is.na(AVAL)),
args = params(mode = "last")
)
) %>%
arrange(STUDYID, USUBJID, BASETYPE, PARAMCD, AVISIT)
```
```{r, eval=TRUE, echo=FALSE}
dataset_vignette(
advs,
display_vars = exprs(USUBJID, PARAMCD, AVISIT, AVAL, ADT, ATPTN, WORSTFL),
filter = USUBJID == "01-701-1015" & WORSTFL == "Y"
)
```
## Assign Treatment (`TRTA`, `TRTP`) {#treatment}
`TRTA` and `TRTP` must match at least one value of the character treatment
variables in ADSL (e.g., `TRTxxA`/`TRTxxP`, `TRTSEQA`/`TRTSEQP`,
`TRxxAGy`/`TRxxPGy`).
An example of a simple implementation for a study without periods could be:
```{r eval=TRUE}
advs <- mutate(advs, TRTP = TRT01P, TRTA = TRT01A)
count(advs, TRTP, TRTA, TRT01P, TRT01A)
```
For studies with periods see the ["Visit and Period Variables"
vignette](visits_periods.html#treatment_bds).
## Assign `ASEQ` {#aseq}
The `{admiral}` function `derive_var_obs_number()` can be used to derive `ASEQ`. An
example call is:
```{r eval=TRUE}
advs <- derive_var_obs_number(
advs,
new_var = ASEQ,
by_vars = exprs(STUDYID, USUBJID),
order = exprs(PARAMCD, ADT, AVISITN, VISITNUM, ATPTN),
check_type = "error"
)
```
```{r, eval=TRUE, echo=FALSE}
dataset_vignette(
advs,
display_vars = exprs(USUBJID, PARAMCD, ADT, AVISITN, ATPTN, VISIT, ADT, ASEQ),
filter = USUBJID == "01-701-1015"
)
```
## Derive Categorization Variables (`AVALCATx`) {#cat}
Admiral does not currently have a generic function to aid in assigning `AVALCATy`/
`AVALCAvN` values. Below is a simple example of how these values may be
assigned:
```{r eval=TRUE}
avalcat_lookup <- tibble::tribble(
~PARAMCD, ~AVALCA1N, ~AVALCAT1,
"HEIGHT", 1, ">140 cm",
"HEIGHT", 2, "<= 140 cm"
)
format_avalcat1n <- function(param, aval) {
case_when(
param == "HEIGHT" & aval > 140 ~ 1,
param == "HEIGHT" & aval <= 140 ~ 2
)
}
advs <- advs %>%
mutate(AVALCA1N = format_avalcat1n(param = PARAMCD, aval = AVAL)) %>%
derive_vars_merged(
avalcat_lookup,
by = exprs(PARAMCD, AVALCA1N)
)
```
```{r, eval=TRUE, echo=FALSE}
dataset_vignette(
advs,
display_vars = exprs(USUBJID, PARAMCD, AVAL, AVALCA1N, AVALCAT1),
filter = PARAMCD == "HEIGHT"
)
```
## Derive Criterion Variables (`CRITy`, `CRITyFL`, `CRITyFLN`) {#crit_vars}
For deriving criterion variables (`CRITy`, `CRITyFL`, `CRITyFLN`) `{admiral}`
provides `derive_vars_crit_flag()`. It ensures that they are derived in an
ADaM-compliant way (see documentation of the function for details).
In most cases the criterion depends on the parameter. The higher order functions
`restrict_derivation()` and `slice_derivation()` are useful in this case. In the
following example the criterion flags for systolic and diastolic blood pressure
from the ADaM IG are derived.
The first criterion is based on `AVAL` and is derived for systolic and diastolic
blood pressure. `slice_derivation()` us used to specify the condition and
description of the criterion depending on the parameter.
```{r eval=TRUE}
advs <- advs %>%
slice_derivation(
derivation = derive_vars_crit_flag,
args = params(
values_yn = TRUE,
create_numeric_flag = TRUE
),
derivation_slice(
filter = PARAMCD == "SYSBP",
args = params(
condition = AVAL > 160,
description = "Systolic Pressure > 160"
)
),
derivation_slice(
filter = PARAMCD == "DIABP",
args = params(
condition = AVAL > 95,
description = "Diastolic Pressure > 95"
)
)
)
```
```{r, eval=TRUE, echo=FALSE}
dataset_vignette(
arrange(advs, USUBJID, AVISITN, ATPTN, PARAMCD),
display_vars = exprs(USUBJID, PARAMCD, AVAL, CHG, CRIT1, CRIT1FL, CRIT1FLN),
filter = PARAMCD %in% c("DIABP", "SYSBP")
)
```
The second criterion is based on `AVAL` and `CHG` and is derived for systolic
blood pressure only. Thus `restrict_derivation()` is used.
```{r eval=TRUE}
advs <- advs %>%
restrict_derivation(
derivation = derive_vars_crit_flag,
args = params(
condition = AVAL > 160 & CHG > 10,
description = "Systolic Pressure > 160 and Change from Baseline in Systolic Pressure > 10",
crit_nr = 2,
values_yn = TRUE,
create_numeric_flag = TRUE
),
filter = PARAMCD == "SYSBP"
)
```
```{r, eval=TRUE, echo=FALSE}
dataset_vignette(
arrange(advs, USUBJID, AVISITN, ATPTN),
display_vars = exprs(USUBJID, PARAMCD, AVAL, CHG, CRIT2, CRIT2FL, CRIT2FLN),
filter = PARAMCD == "SYSBP"
)
```
## Add ADSL variables {#adsl_vars}
If needed, the other `ADSL` variables can now be added.
List of ADSL variables already merged held in vector `adsl_vars`
```{r eval=TRUE}
advs <- advs %>%
derive_vars_merged(
dataset_add = select(adsl, !!!negate_vars(adsl_vars)),
by_vars = exprs(STUDYID, USUBJID)
)
```
```{r, eval=TRUE, echo=FALSE}
dataset_vignette(
advs,
display_vars = exprs(USUBJID, RFSTDTC, RFENDTC, DTHDTC, DTHFL, AGE, AGEU),
filter = USUBJID == "01-701-1015"
)
```
## Derive New Rows {#additional}
When deriving new rows for a data frame, it is essential the programmer takes
time to insert this derivation in the correct location of the code. The location
will vary depending on what previous computations should be retained on the new
record and what computations must be done with the new records.
### Example 1 (Creating a New Record):
To add a new record based on the selection of a certain criterion (e.g. minimum,
maximum) `derive_extreme_records()` can be used. The new records include all
variables of the selected records.
#### Adding a New Record for the Last Value
For each subject and Vital Signs parameter, add a record holding last valid
observation before end of treatment. Set `AVISIT` to `"End of Treatment"` and
assign a unique `AVISITN` value.
```{r eval=TRUE}
advs_ex1 <- advs %>%
derive_extreme_records(
dataset_add = advs,
by_vars = exprs(STUDYID, USUBJID, PARAMCD),