forked from dxyang/StyleTransfer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnetwork.py
111 lines (92 loc) · 3.74 KB
/
network.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import torch
import torch.nn as nn
# Conv Layer
class ConvLayer(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride):
super(ConvLayer, self).__init__()
padding = kernel_size // 2
self.reflection_pad = nn.ReflectionPad2d(padding)
self.conv2d = nn.Conv2d(in_channels, out_channels, kernel_size, stride) #, padding)
def forward(self, x):
out = self.reflection_pad(x)
out = self.conv2d(out)
return out
# Upsample Conv Layer
class UpsampleConvLayer(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride, upsample=None):
super(UpsampleConvLayer, self).__init__()
self.upsample = upsample
if upsample:
self.upsample = nn.Upsample(scale_factor=upsample, mode='nearest')
reflection_padding = kernel_size // 2
self.reflection_pad = nn.ReflectionPad2d(reflection_padding)
self.conv2d = nn.Conv2d(in_channels, out_channels, kernel_size, stride)
def forward(self, x):
if self.upsample:
x = self.upsample(x)
out = self.reflection_pad(x)
out = self.conv2d(out)
return out
# Residual Block
# adapted from pytorch tutorial
# https://github.com/yunjey/pytorch-tutorial/blob/master/tutorials/02-
# intermediate/deep_residual_network/main.py
class ResidualBlock(nn.Module):
def __init__(self, channels):
super(ResidualBlock, self).__init__()
self.conv1 = ConvLayer(channels, channels, kernel_size=3, stride=1)
self.in1 = nn.InstanceNorm2d(channels, affine=True)
self.relu = nn.ReLU()
self.conv2 = ConvLayer(channels, channels, kernel_size=3, stride=1)
self.in2 = nn.InstanceNorm2d(channels, affine=True)
def forward(self, x):
residual = x
out = self.relu(self.in1(self.conv1(x)))
out = self.in2(self.conv2(out))
out = out + residual
out = self.relu(out)
return out
# Image Transform Network
class ImageTransformNet(nn.Module):
def __init__(self):
super(ImageTransformNet, self).__init__()
# nonlineraity
self.relu = nn.ReLU()
self.tanh = nn.Tanh()
# encoding layers
self.conv1 = ConvLayer(3, 32, kernel_size=9, stride=1)
self.in1_e = nn.InstanceNorm2d(32, affine=True)
self.conv2 = ConvLayer(32, 64, kernel_size=3, stride=2)
self.in2_e = nn.InstanceNorm2d(64, affine=True)
self.conv3 = ConvLayer(64, 128, kernel_size=3, stride=2)
self.in3_e = nn.InstanceNorm2d(128, affine=True)
# residual layers
self.res1 = ResidualBlock(128)
self.res2 = ResidualBlock(128)
self.res3 = ResidualBlock(128)
self.res4 = ResidualBlock(128)
self.res5 = ResidualBlock(128)
# decoding layers
self.deconv3 = UpsampleConvLayer(128, 64, kernel_size=3, stride=1, upsample=2 )
self.in3_d = nn.InstanceNorm2d(64, affine=True)
self.deconv2 = UpsampleConvLayer(64, 32, kernel_size=3, stride=1, upsample=2 )
self.in2_d = nn.InstanceNorm2d(32, affine=True)
self.deconv1 = UpsampleConvLayer(32, 3, kernel_size=9, stride=1)
self.in1_d = nn.InstanceNorm2d(3, affine=True)
def forward(self, x):
# encode
y = self.relu(self.in1_e(self.conv1(x)))
y = self.relu(self.in2_e(self.conv2(y)))
y = self.relu(self.in3_e(self.conv3(y)))
# residual layers
y = self.res1(y)
y = self.res2(y)
y = self.res3(y)
y = self.res4(y)
y = self.res5(y)
# decode
y = self.relu(self.in3_d(self.deconv3(y)))
y = self.relu(self.in2_d(self.deconv2(y)))
#y = self.tanh(self.in1_d(self.deconv1(y)))
y = self.deconv1(y)
return y