forked from liuliu/ccv
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathccv_daisy.c
233 lines (231 loc) · 10.4 KB
/
ccv_daisy.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
#include "ccv.h"
#include "ccv_internal.h"
/* the method is adopted from original author's published C++ code under BSD Licence.
* Here is the copyright:
* //////////////////////////////////////////////////////////////////////////
* // Software License Agreement (BSD License) //
* // //
* // Copyright (c) 2009 //
* // Engin Tola //
* // web : http://cvlab.epfl.ch/~tola //
* // email : [email protected] //
* // //
* // All rights reserved. //
* // //
* // Redistribution and use in source and binary forms, with or without //
* // modification, are permitted provided that the following conditions //
* // are met: //
* // //
* // * Redistributions of source code must retain the above copyright //
* // notice, this list of conditions and the following disclaimer. //
* // * Redistributions in binary form must reproduce the above //
* // copyright notice, this list of conditions and the following //
* // disclaimer in the documentation and/or other materials provided //
* // with the distribution. //
* // * Neither the name of the EPFL nor the names of its //
* // contributors may be used to endorse or promote products derived //
* // from this software without specific prior written permission. //
* // //
* // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS //
* // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT //
* // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS //
* // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE //
* // COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, //
* // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, //
* // BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; //
* // LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER //
* // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT //
* // LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN //
* // ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE //
* // POSSIBILITY OF SUCH DAMAGE. //
* // //
* // See licence.txt file for more details //
* //////////////////////////////////////////////////////////////////////////
*/
void ccv_daisy(ccv_dense_matrix_t* a, ccv_dense_matrix_t** b, int type, ccv_daisy_param_t params)
{
int grid_point_number = params.rad_q_no * params.th_q_no + 1;
int desc_size = grid_point_number * params.hist_th_q_no;
char* identifier = (char*)alloca(ccv_max(sizeof(ccv_daisy_param_t) + 9, sizeof(double) * params.rad_q_no));
memset(identifier, 0, ccv_max(sizeof(ccv_daisy_param_t) + 9, sizeof(double) * params.rad_q_no));
memcpy(identifier, "ccv_daisy", 9);
memcpy(identifier + 9, ¶ms, sizeof(ccv_daisy_param_t));
uint64_t sig = (a->sig == 0) ? 0 : ccv_cache_generate_signature(identifier, sizeof(ccv_daisy_param_t) + 9, a->sig, CCV_EOF_SIGN);
type = (type == 0) ? CCV_32F | CCV_C1 : CCV_GET_DATA_TYPE(type) | CCV_C1;
ccv_dense_matrix_t* db = *b = ccv_dense_matrix_renew(*b, a->rows, a->cols * desc_size, CCV_C1 | CCV_ALL_DATA_TYPE, type, sig);
int layer_size = a->rows * a->cols;
int cube_size = layer_size * params.hist_th_q_no;
float* workspace_memory = (float*)ccmalloc(cube_size * (params.rad_q_no + 2) * sizeof(float));
/* compute_cube_sigmas */
int i, j, k, r, t;
double* cube_sigmas = (double*)identifier;
double r_step = params.radius / (double)params.rad_q_no;
for (i = 0; i < params.rad_q_no; i++)
cube_sigmas[i] = (i + 1) * r_step * 0.5;
/* compute_grid_points */
double t_step = 2 * 3.141592654 / params.th_q_no;
double* grid_points = (double*)alloca(grid_point_number * 2 * sizeof(double));
for (i = 0; i < params.rad_q_no; i++)
for (j = 0; j < params.th_q_no; j++)
{
grid_points[(i * params.th_q_no + 1 + j) * 2] = sin(j * t_step) * (i + 1) * r_step;
grid_points[(i * params.th_q_no + 1 + j) * 2 + 1] = cos(j * t_step) * (i + 1) * r_step;
}
/* TODO: require 0.5 gaussian smooth before gradient computing */
/* NOTE: the default sobel already applied a sigma = 0.85 gaussian blur by using a
* | -1 0 1 | | 0 0 0 | | 1 2 1 |
* | -2 0 2 | = | -1 0 1 | * | 2 4 2 |
* | -1 0 1 | | 0 0 0 | | 1 2 1 | */
ccv_dense_matrix_t* dx = ccv_dense_matrix_new(a->rows, a->cols, CCV_32F | CCV_C1, 0, 0);
ccv_sobel(a, &dx, 0, 1, 0);
ccv_dense_matrix_t* dy = ccv_dense_matrix_new(a->rows, a->cols, CCV_32F | CCV_C1, 0, 0);
ccv_sobel(a, &dy, 0, 0, 1);
double sobel_sigma = sqrt(0.5 / -log(0.5));
double sigma_init = 1.6;
double sigma = sqrt(sigma_init * sigma_init - sobel_sigma * sobel_sigma);
/* layered_gradient & smooth_layers */
for (k = params.hist_th_q_no - 1; k >= 0; k--)
{
float radius = k * 2 * 3.141592654 / params.th_q_no;
float kcos = cos(radius);
float ksin = sin(radius);
float* w_ptr = workspace_memory + cube_size + (k - 1) * layer_size;
for (i = 0; i < layer_size; i++)
w_ptr[i] = ccv_max(0, kcos * dx->data.f32[i] + ksin * dy->data.f32[i]);
ccv_dense_matrix_t src = ccv_dense_matrix(a->rows, a->cols, CCV_32F | CCV_C1, w_ptr, 0);
ccv_dense_matrix_t des = ccv_dense_matrix(a->rows, a->cols, CCV_32F | CCV_C1, w_ptr + layer_size, 0);
ccv_dense_matrix_t* desp = &des;
ccv_blur(&src, &desp, 0, sigma);
}
ccv_matrix_free(dx);
ccv_matrix_free(dy);
/* compute_smoothed_gradient_layers & compute_histograms (rearrange memory) */
for (k = 0; k < params.rad_q_no; k++)
{
sigma = (k == 0) ? cube_sigmas[0] : sqrt(cube_sigmas[k] * cube_sigmas[k] - cube_sigmas[k - 1] * cube_sigmas[k - 1]);
float* src_ptr = workspace_memory + (k + 1) * cube_size;
float* des_ptr = src_ptr + cube_size;
for (i = 0; i < params.hist_th_q_no; i++)
{
ccv_dense_matrix_t src = ccv_dense_matrix(a->rows, a->cols, CCV_32F | CCV_C1, src_ptr + i * layer_size, 0);
ccv_dense_matrix_t des = ccv_dense_matrix(a->rows, a->cols, CCV_32F | CCV_C1, des_ptr + i * layer_size, 0);
ccv_dense_matrix_t* desp = &des;
ccv_blur(&src, &desp, 0, sigma);
}
float* his_ptr = src_ptr - cube_size;
for (i = 0; i < layer_size; i++)
for (j = 0; j < params.hist_th_q_no; j++)
his_ptr[i * params.hist_th_q_no + j] = src_ptr[i + j * layer_size];
}
/* petals of the flower */
memset(db->data.u8, 0, db->rows * db->step);
for (i = 0; i < a->rows; i++)
for (j = 0; j < a->cols; j++)
{
float* a_ptr = workspace_memory + i * params.hist_th_q_no * a->cols + j * params.hist_th_q_no;
float* b_ptr = db->data.f32 + i * db->cols + j * desc_size;
memcpy(b_ptr, a_ptr, params.hist_th_q_no * sizeof(float));
for (r = 0; r < params.rad_q_no; r++)
{
int rdt = r * params.th_q_no + 1;
for (t = rdt; t < rdt + params.th_q_no; t++)
{
double y = i + grid_points[t * 2];
double x = j + grid_points[t * 2 + 1];
int iy = (int)(y + 0.5);
int ix = (int)(x + 0.5);
float* bh = b_ptr + t * params.hist_th_q_no;
if (iy < 0 || iy >= a->rows || ix < 0 || ix >= a->cols)
continue;
// bilinear interpolation
int jy = (int)y;
int jx = (int)x;
float yr = y - jy, _yr = 1 - yr;
float xr = x - jx, _xr = 1 - xr;
if (jy >= 0 && jy < a->rows && jx >= 0 && jx < a->cols)
{
float* ah = workspace_memory + (r + 1) * cube_size + jy * params.hist_th_q_no * a->cols + jx * params.hist_th_q_no;
for (k = 0; k < params.hist_th_q_no; k++)
bh[k] += ah[k] * _yr * _xr;
}
if (jy + 1 >= 0 && jy + 1 < a->rows && jx >= 0 && jx < a->cols)
{
float* ah = workspace_memory + (r + 1) * cube_size + (jy + 1) * params.hist_th_q_no * a->cols + jx * params.hist_th_q_no;
for (k = 0; k < params.hist_th_q_no; k++)
bh[k] += ah[k] * yr * _xr;
}
if (jy >= 0 && jy < a->rows && jx + 1 >= 0 && jx + 1 < a->cols)
{
float* ah = workspace_memory + (r + 1) * cube_size + jy * params.hist_th_q_no * a->cols + (jx + 1) * params.hist_th_q_no;
for (k = 0; k < params.hist_th_q_no; k++)
bh[k] += ah[k] * _yr * xr;
}
if (jy + 1 >= 0 && jy + 1 < a->rows && jx + 1 >= 0 && jx + 1 < a->cols)
{
float* ah = workspace_memory + (r + 1) * cube_size + (jy + 1) * params.hist_th_q_no * a->cols + (jx + 1) * params.hist_th_q_no;
for (k = 0; k < params.hist_th_q_no; k++)
bh[k] += ah[k] * yr * xr;
}
}
}
}
ccfree(workspace_memory);
for (i = 0; i < a->rows; i++)
for (j = 0; j < a->cols; j++)
{
float* b_ptr = db->data.f32 + i * db->cols + j * desc_size;
float norm;
int iter, changed;
switch (params.normalize_method)
{
case CCV_DAISY_NORMAL_PARTIAL:
for (t = 0; t < grid_point_number; t++)
{
norm = 0;
float* bh = b_ptr + t * params.hist_th_q_no;
for (k = 0; k < params.hist_th_q_no; k++)
norm += bh[k] * bh[k];
if (norm > 1e-6)
{
norm = 1.0 / sqrt(norm);
for (k = 0; k < params.hist_th_q_no; k++)
bh[k] *= norm;
}
}
break;
case CCV_DAISY_NORMAL_FULL:
norm = 0;
for (t = 0; t < desc_size; t++)
norm += b_ptr[t] * b_ptr[t];
if (norm > 1e-6)
{
norm = 1.0 / sqrt(norm);
for (t = 0; t < desc_size; t++)
b_ptr[t] *= norm;
}
break;
case CCV_DAISY_NORMAL_SIFT:
for (iter = 0, changed = 1; changed && iter < 5; iter++)
{
norm = 0;
for (t = 0; t < desc_size; t++)
norm += b_ptr[t] * b_ptr[t];
changed = 0;
if (norm > 1e-6)
{
norm = 1.0 / sqrt(norm);
for (t = 0; t < desc_size; t++)
{
b_ptr[t] *= norm;
if (b_ptr[t] < params.normalize_threshold)
{
b_ptr[t] = params.normalize_threshold;
changed = 1;
}
}
}
}
break;
}
}
}