Skip to content

Commit 1cdb5a5

Browse files
committed
SVM
1 parent 00a07d8 commit 1cdb5a5

File tree

1 file changed

+3
-2
lines changed

1 file changed

+3
-2
lines changed

readme.md

Lines changed: 3 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -650,7 +650,7 @@ def predict(Theta1,Theta2,X):
650650
![enter description here][25]
651651
- 最终得到的代价函数为:
652652
![J(\theta ) = C\sum\limits_{i = 1}^m {[{y^{(i)}}\cos {t_1}({\theta ^T}{x^{(i)}}) + (1 - {y^{(i)}})\cos {t_0}({\theta ^T}{x^{(i)}})} ] + \frac{1}{2}\sum\limits_{j = 1}^{\text{n}} {\theta _j^2} ](http://chart.apis.google.com/chart?cht=tx&chs=1x0&chf=bg,s,FFFFFF00&chco=000000&chl=J%28%5Ctheta%20%29%20%3D%20C%5Csum%5Climits_%7Bi%20%3D%201%7D%5Em%20%7B%5B%7By%5E%7B%28i%29%7D%7D%5Ccos%20%7Bt_1%7D%28%7B%5Ctheta%20%5ET%7D%7Bx%5E%7B%28i%29%7D%7D%29%20%2B%20%281%20-%20%7By%5E%7B%28i%29%7D%7D%29%5Ccos%20%7Bt_0%7D%28%7B%5Ctheta%20%5ET%7D%7Bx%5E%7B%28i%29%7D%7D%29%7D%20%5D%20%2B%20%5Cfrac%7B1%7D%7B2%7D%5Csum%5Climits_%7Bj%20%3D%201%7D%5E%7B%5Ctext%7Bn%7D%7D%20%7B%5Ctheta%20_j%5E2%7D%20)
653-
最后我们想要![{\min }\limits_\theta J(\theta )](http://chart.apis.google.com/chart?cht=tx&chs=1x0&chf=bg,s,FFFFFF00&chco=000000&chl=%5Cmathop%20%7B%5Cmin%20%7D%5Climits_%5Ctheta%20%20J%28%5Ctheta%20%29)
653+
最后我们想要![\mathop {\min }\limits_\theta J(\theta )](http://latex.codecogs.com/gif.latex?%5Clarge%20%5Cmathop%20%7B%5Cmin%20%7D%5Climits_%5Ctheta%20J%28%5Ctheta%20%29)
654654
- 之前我们逻辑回归中的代价函数为:
655655
![J(\theta ) = - \frac{1}{m}\sum\limits_{i = 1}^m {[{y^{(i)}}\log ({h_\theta }({x^{(i)}}) + (1 - } {y^{(i)}})\log (1 - {h_\theta }({x^{(i)}})] + \frac{\lambda }{{2m}}\sum\limits_{j = 1}^n {\theta _j^2} ](http://chart.apis.google.com/chart?cht=tx&chs=1x0&chf=bg,s,FFFFFF00&chco=000000&chl=J%28%5Ctheta%20%29%20%3D%20%20-%20%5Cfrac%7B1%7D%7Bm%7D%5Csum%5Climits_%7Bi%20%3D%201%7D%5Em%20%7B%5B%7By%5E%7B%28i%29%7D%7D%5Clog%20%28%7Bh_%5Ctheta%20%7D%28%7Bx%5E%7B%28i%29%7D%7D%29%20%2B%20%281%20-%20%7D%20%7By%5E%7B%28i%29%7D%7D%29%5Clog%20%281%20-%20%7Bh_%5Ctheta%20%7D%28%7Bx%5E%7B%28i%29%7D%7D%29%5D%20%2B%20%5Cfrac%7B%5Clambda%20%7D%7B%7B2m%7D%7D%5Csum%5Climits_%7Bj%20%3D%201%7D%5En%20%7B%5Ctheta%20_j%5E2%7D%20)
656656
可以认为这里的![C = \frac{m}{\lambda }](http://chart.apis.google.com/chart?cht=tx&chs=1x0&chf=bg,s,FFFFFF00&chco=000000&chl=C%20%3D%20%5Cfrac%7Bm%7D%7B%5Clambda%20%7D),只是表达形式问题,这里`C`的值越大,SVM的决策边界的`margin`也越大,下面会说明
@@ -699,9 +699,10 @@ def predict(Theta1,Theta2,X):
699699
- 对于给出的`x`,计算`f`,令:![f_0^{(i)} = 1](http://chart.apis.google.com/chart?cht=tx&chs=1x0&chf=bg,s,FFFFFF00&chco=000000&chl=f_0%5E%7B%28i%29%7D%20%3D%201)所以:![{f^{(i)}} \in {R^{m + 1}}](http://chart.apis.google.com/chart?cht=tx&chs=1x0&chf=bg,s,FFFFFF00&chco=000000&chl=%7Bf%5E%7B%28i%29%7D%7D%20%5Cin%20%7BR%5E%7Bm%20%2B%201%7D%7D)
700700
- 最小化`J`求出`θ`
701701
![J(\theta ) = C\sum\limits_{i = 1}^m {[{y^{(i)}}\cos {t_1}({\theta ^T}{f^{(i)}}) + (1 - {y^{(i)}})\cos {t_0}({\theta ^T}{f^{(i)}})} ] + \frac{1}{2}\sum\limits_{j = 1}^{\text{n}} {\theta _j^2} ](http://chart.apis.google.com/chart?cht=tx&chs=1x0&chf=bg,s,FFFFFF00&chco=000000&chl=J%28%5Ctheta%20%29%20%3D%20C%5Csum%5Climits_%7Bi%20%3D%201%7D%5Em%20%7B%5B%7By%5E%7B%28i%29%7D%7D%5Ccos%20%7Bt_1%7D%28%7B%5Ctheta%20%5ET%7D%7Bf%5E%7B%28i%29%7D%7D%29%20%2B%20%281%20-%20%7By%5E%7B%28i%29%7D%7D%29%5Ccos%20%7Bt_0%7D%28%7B%5Ctheta%20%5ET%7D%7Bf%5E%7B%28i%29%7D%7D%29%7D%20%5D%20%2B%20%5Cfrac%7B1%7D%7B2%7D%5Csum%5Climits_%7Bj%20%3D%201%7D%5E%7B%5Ctext%7Bn%7D%7D%20%7B%5Ctheta%20_j%5E2%7D%20)
702-
- 如果![{\theta ^T}f \geqslant 0](http://chart.apis.google.com/chart?cht=tx&chs=1x0&chf=bg,s,FFFFFF00&chco=000000&chl=%7B%5Ctheta%20%5ET%7Df%20%5Cgeqslant%200),==》预测`y=1`
702+
- 如果![{\theta ^T}f \geqslant 0](http://latex.codecogs.com/gif.latex?%5Clarge%20%7B%5Ctheta%20%5ET%7Df%20%5Cgeqslant%200),==》预测`y=1`
703703

704704
### 4、使用`scikit-learn`中的`SVM`模型代码
705+
- [全部代码](/SVM/SVM_scikit-learn.py)
705706
- 线性可分的,指定核函数为`linear`
706707
```
707708
'''data1——线性分类'''

0 commit comments

Comments
 (0)