@@ -644,13 +644,13 @@ def predict(Theta1,Theta2,X):
644
644
![ \cos t({h_ \theta }(x),y) = \left\{ {\begin{array}{c} { - \log ({h_ \theta }(x))} \\ { - \log (1 - {h_ \theta }(x))} \end{array} \begin{array}{c} {y = 1} \\ {y = 0} \end{array} } \right.] ( http://chart.apis.google.com/chart?cht=tx&chs=1x0&chf=bg,s,FFFFFF00&chco=000000&chl=%5Ccos%20t%28%7Bh_%5Ctheta%20%7D%28x%29%2Cy%29%20%3D%20%5Cleft%5C%7B%20%7B%5Cbegin%7Barray%7D%7Bc%7D%20%20%20%20%7B%20-%20%5Clog%20%28%7Bh_%5Ctheta%20%7D%28x%29%29%7D%20%5C%5C%20%20%20%20%7B%20-%20%5Clog%20%281%20-%20%7Bh_%5Ctheta%20%7D%28x%29%29%7D%20%20%5Cend%7Barray%7D%20%5Cbegin%7Barray%7D%7Bc%7D%20%20%20%20%7By%20%3D%201%7D%20%5C%5C%20%20%20%20%7By%20%3D%200%7D%20%20%5Cend%7Barray%7D%20%7D%20%5Cright. ) ,
645
645
其中:![ {h_ \theta }({\text{z}}) = \frac{1}{{1 + {e^{ - z}}}}] ( http://chart.apis.google.com/chart?cht=tx&chs=1x0&chf=bg,s,FFFFFF00&chco=000000&chl=%7Bh_%5Ctheta%20%7D%28%7B%5Ctext%7Bz%7D%7D%29%20%3D%20%5Cfrac%7B1%7D%7B%7B1%20%2B%20%7Be%5E%7B%20-%20z%7D%7D%7D%7D ) ,![ z = {\theta ^T}x] ( http://chart.apis.google.com/chart?cht=tx&chs=1x0&chf=bg,s,FFFFFF00&chco=000000&chl=z%20%3D%20%7B%5Ctheta%20%5ET%7Dx )
646
646
- 如图所示,如果` y=1 ` ,` cost ` 代价函数如图所示
647
- ![ enter description here] [ 24 ]
647
+ ![ enter description here] [ 24 ]
648
648
我们想让![ {\theta ^T}x > ; > ; 0] ( http://chart.apis.google.com/chart?cht=tx&chs=1x0&chf=bg,s,FFFFFF00&chco=000000&chl=%7B%5Ctheta%20%5ET%7Dx%20%3E%20%20%3E%200 ) ,即` z>>0 ` ,这样的话` cost ` 代价函数才会趋于最小(这是我们想要的),所以用途中** 红色** 的函数![ \cos {t_1}(z)] ( http://chart.apis.google.com/chart?cht=tx&chs=1x0&chf=bg,s,FFFFFF00&chco=000000&chl=%5Ccos%20%7Bt_1%7D%28z%29 ) 代替逻辑回归中的cost
649
649
- 当` y=0 ` 时同样,用![ \cos {t_0}(z)] ( http://chart.apis.google.com/chart?cht=tx&chs=1x0&chf=bg,s,FFFFFF00&chco=000000&chl=%5Ccos%20%7Bt_0%7D%28z%29 ) 代替
650
650
![ enter description here] [ 25 ]
651
651
- 最终得到的代价函数为:
652
652
![ J(\theta ) = C\sum\limits_ {i = 1}^m {[ {y^{(i)}}\cos {t_1}({\theta ^T}{x^{(i)}}) + (1 - {y^{(i)}})\cos {t_0}({\theta ^T}{x^{(i)}})} ] + \frac{1}{2}\sum\limits_ {j = 1}^{\text{n}} {\theta _ j^2} ] ( http://chart.apis.google.com/chart?cht=tx&chs=1x0&chf=bg,s,FFFFFF00&chco=000000&chl=J%28%5Ctheta%20%29%20%3D%20C%5Csum%5Climits_%7Bi%20%3D%201%7D%5Em%20%7B%5B%7By%5E%7B%28i%29%7D%7D%5Ccos%20%7Bt_1%7D%28%7B%5Ctheta%20%5ET%7D%7Bx%5E%7B%28i%29%7D%7D%29%20%2B%20%281%20-%20%7By%5E%7B%28i%29%7D%7D%29%5Ccos%20%7Bt_0%7D%28%7B%5Ctheta%20%5ET%7D%7Bx%5E%7B%28i%29%7D%7D%29%7D%20%5D%20%2B%20%5Cfrac%7B1%7D%7B2%7D%5Csum%5Climits_%7Bj%20%3D%201%7D%5E%7B%5Ctext%7Bn%7D%7D%20%7B%5Ctheta%20_j%5E2%7D%20 )
653
- 最后我们想要![ \mathop {\min }\limits_ \theta J(\theta )] ( http://chart.apis.google.com/chart?cht=tx&chs=1x0&chf=bg,s,FFFFFF00&chco=000000&chl=%5Cmathop%20%7B%5Cmin%20%7D%5Climits_%5Ctheta%20%20J%28%5Ctheta%20%29 )
653
+ 最后我们想要![ {\min }\limits_ \theta J(\theta )] ( http://chart.apis.google.com/chart?cht=tx&chs=1x0&chf=bg,s,FFFFFF00&chco=000000&chl=%5Cmathop%20%7B%5Cmin%20%7D%5Climits_%5Ctheta%20%20J%28%5Ctheta%20%29 )
654
654
- 之前我们逻辑回归中的代价函数为:
655
655
![ J(\theta ) = - \frac{1}{m}\sum\limits_ {i = 1}^m {[ {y^{(i)}}\log ({h_ \theta }({x^{(i)}}) + (1 - } {y^{(i)}})\log (1 - {h_ \theta }({x^{(i)}})] + \frac{\lambda }{{2m}}\sum\limits_ {j = 1}^n {\theta _ j^2} ] ( http://chart.apis.google.com/chart?cht=tx&chs=1x0&chf=bg,s,FFFFFF00&chco=000000&chl=J%28%5Ctheta%20%29%20%3D%20%20-%20%5Cfrac%7B1%7D%7Bm%7D%5Csum%5Climits_%7Bi%20%3D%201%7D%5Em%20%7B%5B%7By%5E%7B%28i%29%7D%7D%5Clog%20%28%7Bh_%5Ctheta%20%7D%28%7Bx%5E%7B%28i%29%7D%7D%29%20%2B%20%281%20-%20%7D%20%7By%5E%7B%28i%29%7D%7D%29%5Clog%20%281%20-%20%7Bh_%5Ctheta%20%7D%28%7Bx%5E%7B%28i%29%7D%7D%29%5D%20%2B%20%5Cfrac%7B%5Clambda%20%7D%7B%7B2m%7D%7D%5Csum%5Climits_%7Bj%20%3D%201%7D%5En%20%7B%5Ctheta%20_j%5E2%7D%20 )
656
656
可以认为这里的![ C = \frac{m}{\lambda }] ( http://chart.apis.google.com/chart?cht=tx&chs=1x0&chf=bg,s,FFFFFF00&chco=000000&chl=C%20%3D%20%5Cfrac%7Bm%7D%7B%5Clambda%20%7D ) ,只是表达形式问题,这里` C ` 的值越大,SVM的决策边界的` margin ` 也越大,下面会说明
@@ -662,7 +662,7 @@ def predict(Theta1,Theta2,X):
662
662
- ![ u = \left[ {\begin{array}{c} {{u_1}} \\ {{u_2}} \end{array} } \right]] ( http://chart.apis.google.com/chart?cht=tx&chs=1x0&chf=bg,s,FFFFFF00&chco=000000&chl=u%20%3D%20%5Cleft%5B%20%7B%5Cbegin%7Barray%7D%7Bc%7D%20%20%20%20%7B%7Bu_1%7D%7D%20%5C%5C%20%20%20%20%7B%7Bu_2%7D%7D%20%20%5Cend%7Barray%7D%20%7D%20%5Cright%5D ) ,![ v = \left[ {\begin{array}{c} {{v_1}} \\ {{v_2}} \end{array} } \right]] ( http://chart.apis.google.com/chart?cht=tx&chs=1x0&chf=bg,s,FFFFFF00&chco=000000&chl=v%20%3D%20%5Cleft%5B%20%7B%5Cbegin%7Barray%7D%7Bc%7D%20%20%20%20%7B%7Bv_1%7D%7D%20%5C%5C%20%20%20%20%7B%7Bv_2%7D%7D%20%20%5Cend%7Barray%7D%20%7D%20%5Cright%5D )
663
663
- ![ ||u||] ( http://chart.apis.google.com/chart?cht=tx&chs=1x0&chf=bg,s,FFFFFF00&chco=000000&chl=%7C%7Cu%7C%7C ) 表示` u ` 的** 欧几里得范数** (欧式范数),![ ||u||{\text{ = }}\sqrt {{\text{u}}_ 1^2 + u_2^2} ] ( http://chart.apis.google.com/chart?cht=tx&chs=1x0&chf=bg,s,FFFFFF00&chco=000000&chl=%7C%7Cu%7C%7C%7B%5Ctext%7B%20%3D%20%7D%7D%5Csqrt%20%7B%7B%5Ctext%7Bu%7D%7D_1%5E2%20%2B%20u_2%5E2%7D%20 )
664
664
- ` 向量V ` 在` 向量u ` 上的投影的长度记为` p ` ,则:向量内积:
665
- ![ {{\text{u}}^T}v = p||u|| = {u_1}{v_1} + {u_2}{v_2}] ( http://chart.apis.google.com/chart?cht=tx&chs=1x0&chf=bg,s,FFFFFF00&chco=000000&chl=%7B%7B%5Ctext%7Bu%7D%7D%5ET%7Dv%20%3D%20p%7C%7Cu%7C%7C%20%3D%20%7Bu_1%7D%7Bv_1%7D%20%2B%20%7Bu_2%7D%7Bv_2%7D )
665
+ ![ {{\text{u}}^T}v = p||u|| = {u_1}{v_1} + {u_2}{v_2}] ( http://chart.apis.google.com/chart?cht=tx&chs=1x0&chf=bg,s,FFFFFF00&chco=000000&chl=%7B%7B%5Ctext%7Bu%7D%7D%5ET%7Dv%20%3D%20p%7C%7Cu%7C%7C%20%3D%20%7Bu_1%7D%7Bv_1%7D%20%2B%20%7Bu_2%7D%7Bv_2%7D )
666
666
![ enter description here] [ 27 ]
667
667
根据向量夹角公式推导一下即可。![ \cos \theta = \frac{{\overrightarrow {\text{u}} \overrightarrow v }}{{|\overrightarrow {\text{u}} ||\overrightarrow v |}}] ( http://chart.apis.google.com/chart?cht=tx&chs=1x0&chf=bg,s,FFFFFF00&chco=000000&chl=%5Ccos%20%5Ctheta%20%20%3D%20%5Cfrac%7B%7B%5Coverrightarrow%20%7B%5Ctext%7Bu%7D%7D%20%5Coverrightarrow%20v%20%7D%7D%7B%7B%7C%5Coverrightarrow%20%7B%5Ctext%7Bu%7D%7D%20%7C%7C%5Coverrightarrow%20v%20%7C%7D%7D )
668
668
0 commit comments