Skip to content

Commit 5041748

Browse files
committed
Neural Network
1 parent 211db91 commit 5041748

File tree

2 files changed

+20
-0
lines changed

2 files changed

+20
-0
lines changed

formula/NeuralNetwork.wmf

10.2 KB
Binary file not shown.

readme.md

Lines changed: 20 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -424,6 +424,26 @@ from sklearn.linear_model import LogisticRegression
424424
- ![\theta ](http://chart.apis.google.com/chart?cht=tx&chs=1x0&chf=bg,s,FFFFFF00&chco=000000&chl=%5Ctheta%20)共有`L-1`层,
425425
- 然后是累加对应每一层的theta矩阵,注意不包含加上偏置项对应的theta(0)
426426

427+
### 4、反向传播BP
428+
- 上面正向传播可以计算得到`J(θ)`,使用梯度下降法还需要求它的梯度
429+
- BP反向传播的目的就是求代价函数的梯度
430+
- 假设4层的神经网络,![\delta _{\text{j}}^{(l)}](http://chart.apis.google.com/chart?cht=tx&chs=1x0&chf=bg,s,FFFFFF00&chco=000000&chl=%5Cdelta%20_%7B%5Ctext%7Bj%7D%7D%5E%7B%28l%29%7D)记为-->`l`层第`j`个单元的误差
431+
- ![\delta _{\text{j}}^{(4)} = a_j^{(4)} - {y_i}](http://chart.apis.google.com/chart?cht=tx&chs=1x0&chf=bg,s,FFFFFF00&chco=000000&chl=%5Cdelta%20_%7B%5Ctext%7Bj%7D%7D%5E%7B%284%29%7D%20%3D%20a_j%5E%7B%284%29%7D%20-%20%7By_i%7D)《===》![{\delta ^{(4)}} = {a^{(4)}} - y](http://chart.apis.google.com/chart?cht=tx&chs=1x0&chf=bg,s,FFFFFF00&chco=000000&chl=%7B%5Cdelta%20%5E%7B%284%29%7D%7D%20%3D%20%7Ba%5E%7B%284%29%7D%7D%20-%20y)(向量化)
432+
- ![{\delta ^{(3)}} = {({\theta ^{(3)}})^T}{\delta ^{(4)}}.*{g^}({a^{(3)}})](http://chart.apis.google.com/chart?cht=tx&chs=1x0&chf=bg,s,FFFFFF00&chco=000000&chl=%7B%5Cdelta%20%5E%7B%283%29%7D%7D%20%3D%20%7B%28%7B%5Ctheta%20%5E%7B%283%29%7D%7D%29%5ET%7D%7B%5Cdelta%20%5E%7B%284%29%7D%7D.%2A%7Bg%5E%7D%28%7Ba%5E%7B%283%29%7D%7D%29)
433+
- ![{\delta ^{(2)}} = {({\theta ^{(2)}})^T}{\delta ^{(3)}}.*{g^}({a^{(2)}})](http://chart.apis.google.com/chart?cht=tx&chs=1x0&chf=bg,s,FFFFFF00&chco=000000&chl=%7B%5Cdelta%20%5E%7B%282%29%7D%7D%20%3D%20%7B%28%7B%5Ctheta%20%5E%7B%282%29%7D%7D%29%5ET%7D%7B%5Cdelta%20%5E%7B%283%29%7D%7D.%2A%7Bg%5E%7D%28%7Ba%5E%7B%282%29%7D%7D%29)
434+
- 没有![{\delta ^{(1)}}](http://chart.apis.google.com/chart?cht=tx&chs=1x0&chf=bg,s,FFFFFF00&chco=000000&chl=%7B%5Cdelta%20%5E%7B%281%29%7D%7D),因为对于输入没有误差
435+
- 因为S型函数![{\text{g(z)}}](http://chart.apis.google.com/chart?cht=tx&chs=1x0&chf=bg,s,FFFFFF00&chco=000000&chl=%7B%5Ctext%7Bg%28z%29%7D%7D)的倒数为:![{g^}(z){\text{ = g(z)(1 - g(z))}}](http://chart.apis.google.com/chart?cht=tx&chs=1x0&chf=bg,s,FFFFFF00&chco=000000&chl=%7Bg%5E%7D%28z%29%7B%5Ctext%7B%20%3D%20g%28z%29%281%20-%20g%28z%29%29%7D%7D),所以上面的![{g^}({a^{(3)}})](http://chart.apis.google.com/chart?cht=tx&chs=1x0&chf=bg,s,FFFFFF00&chco=000000&chl=%7Bg%5E%7D%28%7Ba%5E%7B%283%29%7D%7D%29)![{g^}({a^{(2)}})](http://chart.apis.google.com/chart?cht=tx&chs=1x0&chf=bg,s,FFFFFF00&chco=000000&chl=%7Bg%5E%7D%28%7Ba%5E%7B%282%29%7D%7D%29)可以在前向传播中计算出来
436+
437+
- 反向传播计算梯度的过程为:
438+
- ![\Delta _{ij}^{(l)} = 0](http://chart.apis.google.com/chart?cht=tx&chs=1x0&chf=bg,s,FFFFFF00&chco=000000&chl=%5CDelta%20_%7Bij%7D%5E%7B%28l%29%7D%20%3D%200)![\Delta ](http://chart.apis.google.com/chart?cht=tx&chs=1x0&chf=bg,s,FFFFFF00&chco=000000&chl=%5CDelta%20)是大写的![\delta ](http://chart.apis.google.com/chart?cht=tx&chs=1x0&chf=bg,s,FFFFFF00&chco=000000&chl=%5Cdelta%20)
439+
- for i=1:m:
440+
![{a^{(1)}} = {x^{(i)}}](http://chart.apis.google.com/chart?cht=tx&chs=1x0&chf=bg,s,FFFFFF00&chco=000000&chl=%7Ba%5E%7B%281%29%7D%7D%20%3D%20%7Bx%5E%7B%28i%29%7D%7D)
441+
正向传播计算![{a^{(l)}}](http://chart.apis.google.com/chart?cht=tx&chs=1x0&chf=bg,s,FFFFFF00&chco=000000&chl=%7Ba%5E%7B%28l%29%7D%7D)(l=2,3,4...L)
442+
反向计算![{\delta ^{(L)}}](http://chart.apis.google.com/chart?cht=tx&chs=1x0&chf=bg,s,FFFFFF00&chco=000000&chl=%7B%5Cdelta%20%5E%7B%28L%29%7D%7D)![{\delta ^{(L - 1)}}](http://chart.apis.google.com/chart?cht=tx&chs=1x0&chf=bg,s,FFFFFF00&chco=000000&chl=%7B%5Cdelta%20%5E%7B%28L%20-%201%29%7D%7D)...![{\delta ^{(2)}}](http://chart.apis.google.com/chart?cht=tx&chs=1x0&chf=bg,s,FFFFFF00&chco=000000&chl=%7B%5Cdelta%20%5E%7B%282%29%7D%7D)
443+
![\Delta _{ij}^{(l)} = \Delta _{ij}^{(l)} + a_j^{(l)}{\delta ^{(l + 1)}}](http://chart.apis.google.com/chart?cht=tx&chs=1x0&chf=bg,s,FFFFFF00&chco=000000&chl=%5CDelta%20_%7Bij%7D%5E%7B%28l%29%7D%20%3D%20%5CDelta%20_%7Bij%7D%5E%7B%28l%29%7D%20%2B%20a_j%5E%7B%28l%29%7D%7B%5Cdelta%20%5E%7B%28l%20%2B%201%29%7D%7D)
444+
445+
446+
427447

428448
[1]: ./images/LinearRegression_01.png "LinearRegression_01.png"
429449
[2]: ./images/LogisticRegression_01.png "LogisticRegression_01.png"

0 commit comments

Comments
 (0)