Skip to content

Commit b2640f5

Browse files
committed
SVM
1 parent 1ea9209 commit b2640f5

File tree

2 files changed

+21
-2
lines changed

2 files changed

+21
-2
lines changed

images/SVM_03.png

13.7 KB
Loading

readme.md

Lines changed: 21 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -641,12 +641,30 @@ def predict(Theta1,Theta2,X):
641641
## 四、SVM支持向量机
642642

643643
### 1、代价函数
644-
- 在逻辑回归中,我们的代价为:![\cos t({h_\theta }(x),y) = \left\{ {\begin{array}{c} { - \log ({h_\theta }(x))} \\ { - \log (1 - {h_\theta }(x))} \end{array} \begin{array}{c} {y = 1} \\ {y = 0} \end{array} } \right.](http://chart.apis.google.com/chart?cht=tx&chs=1x0&chf=bg,s,FFFFFF00&chco=000000&chl=%5Ccos%20t%28%7Bh_%5Ctheta%20%7D%28x%29%2Cy%29%20%3D%20%5Cleft%5C%7B%20%7B%5Cbegin%7Barray%7D%7Bc%7D%20%20%20%20%7B%20-%20%5Clog%20%28%7Bh_%5Ctheta%20%7D%28x%29%29%7D%20%5C%5C%20%20%20%20%7B%20-%20%5Clog%20%281%20-%20%7Bh_%5Ctheta%20%7D%28x%29%29%7D%20%20%5Cend%7Barray%7D%20%5Cbegin%7Barray%7D%7Bc%7D%20%20%20%20%7By%20%3D%201%7D%20%5C%5C%20%20%20%20%7By%20%3D%200%7D%20%20%5Cend%7Barray%7D%20%7D%20%5Cright.),其中:![{h_\theta }({\text{z}}) = \frac{1}{{1 + {e^{ - z}}}}](http://chart.apis.google.com/chart?cht=tx&chs=1x0&chf=bg,s,FFFFFF00&chco=000000&chl=%7Bh_%5Ctheta%20%7D%28%7B%5Ctext%7Bz%7D%7D%29%20%3D%20%5Cfrac%7B1%7D%7B%7B1%20%2B%20%7Be%5E%7B%20-%20z%7D%7D%7D%7D),![{h_\theta }({\text{z}}) = \frac{1}{{1 + {e^{ - z}}}}](http://chart.apis.google.com/chart?cht=tx&chs=1x0&chf=bg,s,FFFFFF00&chco=000000&chl=%7Bh_%5Ctheta%20%7D%28%7B%5Ctext%7Bz%7D%7D%29%20%3D%20%5Cfrac%7B1%7D%7B%7B1%20%2B%20%7Be%5E%7B%20-%20z%7D%7D%7D%7D)
644+
- 在逻辑回归中,我们的代价为:
645+
![\cos t({h_\theta }(x),y) = \left\{ {\begin{array}{c} { - \log ({h_\theta }(x))} \\ { - \log (1 - {h_\theta }(x))} \end{array} \begin{array}{c} {y = 1} \\ {y = 0} \end{array} } \right.](http://chart.apis.google.com/chart?cht=tx&chs=1x0&chf=bg,s,FFFFFF00&chco=000000&chl=%5Ccos%20t%28%7Bh_%5Ctheta%20%7D%28x%29%2Cy%29%20%3D%20%5Cleft%5C%7B%20%7B%5Cbegin%7Barray%7D%7Bc%7D%20%20%20%20%7B%20-%20%5Clog%20%28%7Bh_%5Ctheta%20%7D%28x%29%29%7D%20%5C%5C%20%20%20%20%7B%20-%20%5Clog%20%281%20-%20%7Bh_%5Ctheta%20%7D%28x%29%29%7D%20%20%5Cend%7Barray%7D%20%5Cbegin%7Barray%7D%7Bc%7D%20%20%20%20%7By%20%3D%201%7D%20%5C%5C%20%20%20%20%7By%20%3D%200%7D%20%20%5Cend%7Barray%7D%20%7D%20%5Cright.)
646+
其中:![{h_\theta }({\text{z}}) = \frac{1}{{1 + {e^{ - z}}}}](http://chart.apis.google.com/chart?cht=tx&chs=1x0&chf=bg,s,FFFFFF00&chco=000000&chl=%7Bh_%5Ctheta%20%7D%28%7B%5Ctext%7Bz%7D%7D%29%20%3D%20%5Cfrac%7B1%7D%7B%7B1%20%2B%20%7Be%5E%7B%20-%20z%7D%7D%7D%7D)![z = {\theta ^T}x](http://chart.apis.google.com/chart?cht=tx&chs=1x0&chf=bg,s,FFFFFF00&chco=000000&chl=z%20%3D%20%7B%5Ctheta%20%5ET%7Dx)
645647
- 如图所示,如果`y=1``cost`代价函数如图所示
646648
![enter description here][24]
647649
我们想让![{\theta ^T}x > > 0](http://chart.apis.google.com/chart?cht=tx&chs=1x0&chf=bg,s,FFFFFF00&chco=000000&chl=%7B%5Ctheta%20%5ET%7Dx%20%3E%20%20%3E%200),即`z>>0`,这样的话`cost`代价函数才会趋于最小(这是我们想要的),所以用途中**红色**的函数![\cos {t_1}(z)](http://chart.apis.google.com/chart?cht=tx&chs=1x0&chf=bg,s,FFFFFF00&chco=000000&chl=%5Ccos%20%7Bt_1%7D%28z%29)代替逻辑回归中的cost
648650
-`y=0`时同样,用![\cos {t_0}(z)](http://chart.apis.google.com/chart?cht=tx&chs=1x0&chf=bg,s,FFFFFF00&chco=000000&chl=%5Ccos%20%7Bt_0%7D%28z%29)代替
649651
![enter description here][25]
652+
- 最终得到的代价函数为:
653+
![J(\theta ) = C\sum\limits_{i = 1}^m {[{y^{(i)}}\cos {t_1}({\theta ^T}{x^{(i)}}) + (1 - {y^{(i)}})\cos {t_0}({\theta ^T}{x^{(i)}})} ] + \frac{1}{2}\sum\limits_{j = 1}^m {\theta _j^2} ](http://chart.apis.google.com/chart?cht=tx&chs=1x0&chf=bg,s,FFFFFF00&chco=000000&chl=J%28%5Ctheta%20%29%20%3D%20C%5Csum%5Climits_%7Bi%20%3D%201%7D%5Em%20%7B%5B%7By%5E%7B%28i%29%7D%7D%5Ccos%20%7Bt_1%7D%28%7B%5Ctheta%20%5ET%7D%7Bx%5E%7B%28i%29%7D%7D%29%20%2B%20%281%20-%20%7By%5E%7B%28i%29%7D%7D%29%5Ccos%20%7Bt_0%7D%28%7B%5Ctheta%20%5ET%7D%7Bx%5E%7B%28i%29%7D%7D%29%7D%20%5D%20%2B%20%5Cfrac%7B1%7D%7B2%7D%5Csum%5Climits_%7Bj%20%3D%201%7D%5Em%20%7B%5Ctheta%20_j%5E2%7D%20)
654+
最后我们想要![\mathop {\min }\limits_\theta J(\theta )](http://chart.apis.google.com/chart?cht=tx&chs=1x0&chf=bg,s,FFFFFF00&chco=000000&chl=%5Cmathop%20%7B%5Cmin%20%7D%5Climits_%5Ctheta%20%20J%28%5Ctheta%20%29)
655+
- 之前我们逻辑回归中的代价函数为:
656+
![J(\theta ) = - \frac{1}{m}\sum\limits_{i = 1}^m {[{y^{(i)}}\log ({h_\theta }({x^{(i)}}) + (1 - } {y^{(i)}})\log (1 - {h_\theta }({x^{(i)}})]](http://chart.apis.google.com/chart?cht=tx&chs=1x0&chf=bg,s,FFFFFF00&chco=000000&chl=J%28%5Ctheta%20%29%20%3D%20%20-%20%5Cfrac%7B1%7D%7Bm%7D%5Csum%5Climits_%7Bi%20%3D%201%7D%5Em%20%7B%5B%7By%5E%7B%28i%29%7D%7D%5Clog%20%28%7Bh_%5Ctheta%20%7D%28%7Bx%5E%7B%28i%29%7D%7D%29%20%2B%20%281%20-%20%7D%20%7By%5E%7B%28i%29%7D%7D%29%5Clog%20%281%20-%20%7Bh_%5Ctheta%20%7D%28%7Bx%5E%7B%28i%29%7D%7D%29%5D)
657+
可以认为这里的![C = \frac{m}{\lambda }](http://chart.apis.google.com/chart?cht=tx&chs=1x0&chf=bg,s,FFFFFF00&chco=000000&chl=C%20%3D%20%5Cfrac%7Bm%7D%7B%5Clambda%20%7D),只是表达形式问题,这里`C`的值越大,SVM的决策边界的`margin`也越大,下面会说明
658+
659+
### 2、Large Margin
660+
- 如下图所示,SVM分类会使用最大的`margin`将其分开
661+
![enter description here][26]
662+
- 先说一下向量内积
663+
- ![u = \left[ {\begin{array}{c} {{u_1}} \\ {{u_2}} \end{array} } \right]](http://chart.apis.google.com/chart?cht=tx&chs=1x0&chf=bg,s,FFFFFF00&chco=000000&chl=u%20%3D%20%5Cleft%5B%20%7B%5Cbegin%7Barray%7D%7Bc%7D%20%20%20%20%7B%7Bu_1%7D%7D%20%5C%5C%20%20%20%20%7B%7Bu_2%7D%7D%20%20%5Cend%7Barray%7D%20%7D%20%5Cright%5D)![v = \left[ {\begin{array}{c} {{v_1}} \\ {{v_2}} \end{array} } \right]](http://chart.apis.google.com/chart?cht=tx&chs=1x0&chf=bg,s,FFFFFF00&chco=000000&chl=v%20%3D%20%5Cleft%5B%20%7B%5Cbegin%7Barray%7D%7Bc%7D%20%20%20%20%7B%7Bv_1%7D%7D%20%5C%5C%20%20%20%20%7B%7Bv_2%7D%7D%20%20%5Cend%7Barray%7D%20%7D%20%5Cright%5D)
664+
- ![||u||](http://chart.apis.google.com/chart?cht=tx&chs=1x0&chf=bg,s,FFFFFF00&chco=000000&chl=%7C%7Cu%7C%7C)表示`u`**欧几里得范数**(欧式范数),![||u||{\text{ = }}\sqrt {{\text{u}}_1^2 + u_2^2} ](http://chart.apis.google.com/chart?cht=tx&chs=1x0&chf=bg,s,FFFFFF00&chco=000000&chl=%7C%7Cu%7C%7C%7B%5Ctext%7B%20%3D%20%7D%7D%5Csqrt%20%7B%7B%5Ctext%7Bu%7D%7D_1%5E2%20%2B%20u_2%5E2%7D%20)
665+
-
666+
667+
650668

651669

652670
[1]: ./images/LinearRegression_01.png "LinearRegression_01.png"
@@ -673,4 +691,5 @@ def predict(Theta1,Theta2,X):
673691
[22]: ./images/NeuralNetwork_08.png "NeuralNetwork_08.png"
674692
[23]: ./images/NeuralNetwork_09.png "NeuralNetwork_09.png"
675693
[24]: ./images/SVM_01.png "SVM_01.png"
676-
[25]: ./images/SVM_02.png "SVM_02.png"
694+
[25]: ./images/SVM_02.png "SVM_02.png"
695+
[26]: ./images/SVM_03.png "SVM_03.png"

0 commit comments

Comments
 (0)