-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathautotune.py
388 lines (363 loc) · 13.9 KB
/
autotune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
"""
autotune.py - module generate test data for autotune
Usage:
import autotune
autotune.baseline_test()
autotune.rms_spectrum_test(song='tainted', tuning_f0=110.) # RMS power of equal-temperament bins for song 'tainted'
autotune.mixture_test(song='tainted', tuning_f0=110.) # apply autotune algorithm to song/vocals.wav and mix with song/background.wav
autotune.predominant_melody_test(song='tained', tuning_f0=110.)
Author: Michael A. Casey
Copyright (C) 2015, Bregman Media Labs, Dartmouth College
License: Apache 2.0, see LICENSE file
"""
from bregman.suite import * # the Bregman audio processing toolkit
import matplotlib
from matplotlib.pyplot import *
from matplotlib.mlab import rms_flat
from matplotlib.cbook import flatten
from numpy.linalg import svd
from numpy import *
import os, glob
import scikits.audiolab as audio
import pickle
try:
import voweltimbre as sung
except:
print "warning: voweltimbre not installed"
try:
from essentia.standard import *
except:
print "warning: essentia not installed"
equal_temperament = array(TuningSystem().equal_temperament()) # Ratios for equal temperament tuning
just_intonation = array(TuningSystem().just_intonation()) # Ratios for equal temperament tuning
pythagorean = array(TuningSystem().Pythagorean()) # Ratios for equal temperament tuning
major_scale = [0,2,4,5,7,9,11,12]
f0 = 440 # tuning reference frequency
def gen_audio(f0=440, tuning=equal_temperament, scale=major_scale, filename=None):
# Audio envelope for a note
env = r_[linspace(0,1,440),linspace(1,.8,220), .8*ones(22050-3*660), linspace(.8,0,660), zeros(660)]
# Construct the scale at the given tuning
x = hstack([env * harmonics(f0=f, num_harmonics=10, num_points=22050) for f in f0*tuning[scale]])
if filename is None:
play(balance_signal(x))
else:
wavwrite(x,filename,44100)
def gen_test_signals():
gen_audio(f0, equal_temperament, major_scale, 'A440_Equal_Major.wav')
gen_audio(f0, just_intonation, major_scale, 'A440_Just_Major.wav')
gen_audio(f0, pythagorean, major_scale, 'A440_Pythagorean_Major.wav')
# Detune entire scale
f1 = f0*2**(0.4/12.) # A440 * {0.4 semitone}
gen_audio(f1, equal_temperament, major_scale, 'A450_Equal_Major.wav')
gen_audio(f1, just_intonation, major_scale, 'A450_Just_Major.wav')
gen_audio(f1, pythagorean, major_scale, 'A450_Pythagorean_Major.wav')
def load_signals(dir_expr="*.wav"):
flist = sorted(glob.glob(dir_expr))
if len(flist) ==0 :
raise ValueError("No files found.")
X = {}
ext = flist[0].split('.')[-1][:3]
if ext=='wav':
afun = wavread
elif ext=='aif':
afun = aiffread
else:
raise ValueError("Unrecognized audio file extension: %s"%ext)
for f in flist:
x, sr, fmt = afun(f)
f = f.split(os.sep)[-1] if len(f.split(os.sep)) else f
f = f.split('.')[0].replace(' ','_')
X[f] = x
return X
def peaks_to_autotuned_spectrum(audio, peaks, factor=1.0, N=8192, H=2048, SR=44100.):
"""
Peaks to autotuned short-time Fourier transform
inputs:
audio - float array
peaks - peak dict of 'freqs' and 'mags' per time-point
factor - amount to autotune [1.0=100%]
N - fft length
H - fft hop
SR - audio sample rate
outputs:
bregman.LogFrequencySpectrum
"""
freqs, mags = peaks['freqs'], peaks['mags']
F = features.LinearFrequencySpectrum(audio, nfft=N, wfft=N, nhop=H)
eq_freqs = 55*2**(arange(0,8.5,1/12.))
eq_bins = [argmin(abs(F._fftfrqs-f)) for f in eq_freqs]
Xhat = zeros(F.X.shape)
T = Xhat.shape[1]
for t in xrange(len(freqs)):
if t<T:
for i,(f,a) in enumerate(zip(freqs[t],mags[t])):
if i==0:
eq_freq = eq_freqs[argmin(abs(eq_freqs-f))]
eq_ratio = eq_freq / f # fundamental frequency
df = f * (eq_ratio - 1.0)
f_idx = argmin(abs(F._fftfrqs - (f + factor * df))) # harmonics
Xhat[f_idx,t]=a
F.X = Xhat
return F
def auto_tune(fname, factor=1.0):
X = load_signals(fname)
x = array(X[X.keys()[0]][:,0],dtype='f')
peaks = sung.predominant_harmonics(x, fname)
stft = peaks_to_autotuned_spectrum(x, peaks, factor)
xhat = stft.inverse(stft.X)
return xhat
def normalize(A, axis=None):
Ashape = A.shape
try:
norm = A.sum(axis) + EPS
except TypeError:
norm = A.copy()
for ax in reversed(sorted(axis)):
norm = norm.sum(ax)
norm += EPS
if axis:
nshape = np.array(Ashape)
nshape[axis] = 1
norm.shape = nshape
return A / norm
def baseline_test():
# load reference, detuned, and auto-tuned signals
xdata = load_signals("A*_Equal_Major.wav")
ydata = load_signals("A450_Equal_Major_100.wav")
x0 = xdata["A440_Equal_Major"] # reference
x1 = xdata['A450_Equal_Major'] # detuned (f0)
y1 = ydata['A450_Equal_Major_100'] # autotuned (processed signal)
# Spectral bin resolution = 2.0Hz, time resolution = 2.0Hz
n = 44100 / 2
X0 = LinearFrequencySpectrum(x0, nfft=n, wfft=n, nhop=n)
X1 = LinearFrequencySpectrum(x1, nfft=n, wfft=n, nhop=n)
Y1 = LinearFrequencySpectrum(y1, nfft=n, wfft=n, nhop=n)
freqs = X0._fftfrqs
figure()
semilogx(freqs,X1.X[:,0])
semilogx(freqs,Y1.X[:,0])
semilogx(freqs,X0.X[:,0],'--')
title('Melodyne shifts harmonics of A450Hz to A440Hz', fontsize=20)
xlabel('Frequency (Hz)',fontsize=20)
ylabel('Power',fontsize=20)
legend(['450Hz Original','Autotune','440Hz Reference'],loc=0)
eq_freqs = 110*2**(arange(0,6,1/12.))
eq_bins = [argmin(abs(X0._fftfrqs-f)) for f in eq_freqs]
ax = axis()
plot(c_[X0._fftfrqs[eq_bins],X0._fftfrqs[eq_bins]].T,c_[[ax[2]]*len(eq_freqs),[ax[3]]*len(eq_freqs)].T,'k--')
def mixture_test(song='tainted'):
"""
Display spectral profiles of original and autotuned mixture spectra
inputs:
song - directory name of song (contains: song vocals.wav and background.wav)
outputs:
mix_000, mix_100 - mixed vocals and background for nontuned and autotuned vocals
"""
X = load_signals(song+os.sep+'*.wav')
x0 = X['vocals']
x1 = X['background']
xhat0 = auto_tune(song+os.sep+'vocals.wav',0.0)[:len(x0)] # no autotune
xhat1 = auto_tune(song+os.sep+'vocals.wav',1.0)[:len(x0)] # autotuned to 440Hz
mix0 = (balance_signal(c_[xhat0,xhat0])+balance_signal(x1))/2.0 # background+vocals no autotune
mix1 = (balance_signal(c_[xhat1,xhat1])+balance_signal(x1))/2.0 # background+vocals with autotune
# Short-time Fourier analysis
F0 = LinearFrequencySpectrum(mix0,nfft=8192,wfft=8192,nhop=2048)
F1 = LinearFrequencySpectrum(mix1,nfft=8192,wfft=8192,nhop=2048)
eq_freqs = 110*2**(arange(0,5,1/12.))
eq_bins = [argmin(abs(F1._fftfrqs-f)) for f in eq_freqs]
# Plot spectra and ideal autotuned pitch bins
figure()
semilogx(F0._fftfrqs, normalize(F0.X).mean(1))
semilogx(F1._fftfrqs, normalize(F1.X).mean(1))
ax = axis()
plot(c_[F0._fftfrqs[eq_bins],F0._fftfrqs[eq_bins]].T,c_[[ax[2]]*len(eq_freqs),[ax[3]]*len(eq_freqs)].T,'k--')
legend(['Original vocals','Autotuned vocals','ET pitch'],loc=0)
title(song+': untuned/tuned vocals mixed with background', fontsize=20)
xlabel('Frequency (Hz)',fontsize=20)
ylabel('Power',fontsize=20)
# Calculate RMS amplitude in equal-temperament pitch bands
text(1,ax[3]*.9, "ET bands nontuned RMS = %f"%(F0.X[eq_bins]**2).mean()**0.5, fontsize=14)
text(1,ax[3]*.8, "ET bands autotuned RMS = %f"%(F1.X[eq_bins]**2).mean()**0.5, fontsize=14)
return mix0, mix1
def rms_spectrum_test(song='tainted', tuning_f0=110., channel=0):
"""
Extract spectral RMS power for equal temperament pitches
inputs:
song - directory name of song (contains: song/mix_000.wav and song/mix_100.wav non-autotuned and autotuned mixes)
tuning_f0 - lowest frequency to track melody (110Hz = A440Hz/4) [110]
channel - whether to use 0=left, 1=right, or 2=both channels [0]
outputs:
dict {'nontuned_rms':df0, 'autotuned_rms':df1} energy (RMS power) at ideal pitch tuning freqs
"""
x0, sr, fmt = wavread(song+os.sep+'mix_000.wav')
x1, sr, fmt = wavread(song+os.sep+'mix_100.wav')
if channel==2: # mix the channels
if len(x0.shape) > 1:
x0 = x0.mean(1)
if len(x1.shape) > 1:
x1 = x1.mean(1)
else: # extract given channel
if len(x0.shape) > 1:
x0 = x0[:,channel]
if len(x1.shape) > 1:
x1 = x1[:,channel]
# Short-time Fourier analysis
F0 = LinearFrequencySpectrum(x0,nfft=8192,wfft=8192,nhop=2048)
F1 = LinearFrequencySpectrum(x1,nfft=8192,wfft=8192,nhop=2048)
eq_freqs = tuning_f0*2**(arange(0,5,1/12.))
eq_bins = array([argmin(abs(F0._fftfrqs-f)) for f in eq_freqs])
# df0 = normalize(F0.X)[eq_bins].mean(1)
df0 = (normalize(F0.X)[eq_bins]**2).mean(1)**0.5
#df1 = nomalize(F1.X)[eq_bins].mean(1)
df1 = (normalize(F1.X)[eq_bins]**2).mean(1)**0.5
figure()
semilogx(F0._fftfrqs[eq_bins], df0)
semilogx(F0._fftfrqs[eq_bins], df1)
legend(['Original vocals','Autotuned vocals'],loc=0)
title(song+': ET bands untuned/tuned vocals mixed with background', fontsize=20)
xlabel('Equal Temperament Bands (Hz)',fontsize=20)
ylabel('Power',fontsize=20)
grid()
return {'nontuned_rms':rms_flat(df0), 'autotuned_rms':rms_flat(df1)}
def predominant_melody_test(song='tainted', tuning_f0=110., channel=0):
"""
Extract predominant melody (f0 track) and compare to equal temperament tuning.
inputs:
song - directory name of song (contains: song/mix_000.wav and song/mix_100.wav non-autotuned and autotuned mixes)
tuning_f0 - lowest frequency to track melody (110Hz = A440Hz/4) [110]
channel - whether to use 0=left, 1=right, or 2=both channels [0]
outputs:
dict {'nontuned_deltas':df0, 'autotuned_deltas':df1} deviations from ideal pitch tuning
"""
p0 = PredominantMelody(frameSize=4096, hopSize=2048,
minFrequency=80.0, maxFrequency=20000., guessUnvoiced=True, voiceVibrato=False)
p1 = PredominantMelody(frameSize=4096, hopSize=2048,
minFrequency=80.0, maxFrequency=20000., guessUnvoiced=True, voiceVibrato=False)
x0, sr, fmt = wavread(song+os.sep+'mix_000.wav')
x1, sr, fmt = wavread(song+os.sep+'mix_100.wav')
if channel==2: # mix the channels
if len(x0.shape) > 1:
x0 = x0.mean(1)
if len(x1.shape) > 1:
x1 = x1.mean(1)
else: # extract given channel
if len(x0.shape) > 1:
x0 = x0[:,channel]
if len(x1.shape) > 1:
x1 = x1[:,channel]
mel00 = p0(array(x0,dtype='f'))[0]
mel10 = p1(array(x1,dtype='f'))[0]
eq_freqs = tuning_f0*2**(arange(0,5,1/12.))
df0 = median([min(abs(eq_freqs-f)) for f in mel00[where(mel00)]])
df1 = median([min(abs(eq_freqs-f)) for f in mel10[where(mel10)]])
return {'nontuned_deltas':df0, 'autotuned_deltas':df1}
def eval_gauss(x, mu,sigma2):
"""
evaluate point x on 1d gaussian with mean mu and variance sigma2
"""
return 1.0/sqrt(2*pi*sigma2)*exp(-0.5*(x-mu)/sigma2)
def dB(x):
return 20*log10(x)
def calc_precrec(t0w0,t0w1,t1w0,t1w1,null_clf):
"""
Calculate precision-recall from log likelihoods
inputs:
t0w0 - log likelihood of null data with null model
t0w1 - log likelihood of null data with autotune model
t1w0 - log likelihood of autotune data with null model
t1w1 - log likelihood of autotune data with autotune model
outputs:
prec - precision for each retrieved autotune datum
rec - recall for each retrieved autotune datum
"""
if null_clf:
t = argsort(r_[t0w0-t0w1,t1w0-t1w1])[::-1] # TP + FP
else:
t = argsort(r_[t1w1-t1w0,t0w1-t0w0])[::-1] # TP + FP
N = len(t) # count percentiles for 100% precision
prec, rec = [], []
for i in xrange(N):
if sum(t[:i+1]<N/2):
prec.append(sum(t[:i+1]<N/2)/float(i+1))
rec.append(sum(t[:i+1]<N/2)/float(N/2))
if rec[-1]>=1.0-finfo(float).eps:
break
return prec,rec
def calc_fscore(r,p):
"""
given recall and precision arrays, calculate the f-measure (f-score)
"""
a = array(zip(flatten(r),flatten(p)))
r,p = a[:,0],a[:,1]
idx = where(r)
r,p = r[idx],p[idx]
F = (2*p*r/(p+r)).mean()
return F
def evaluate_classifier(fname='saved_data.pickle', use_pca=True, null_clf=False, eps=finfo(float).eps, clip=-100):
"""
Gaussian classifier for non-tuned / autotuned equal-temparement magnitudes
"""
with open(fname,'rb') as f:
data = pickle.load(f)
a0 = array([[dd['nontuned_mags'] for dd in d] for d in data[1::2]])
a1 = array([[dd['autotuned_mags'] for dd in d] for d in data[1::2]])
P,TP,FN,FP,TN,PR,RE = [],[],[],[],[],[],[]
T0W0,T0W1,T1W0,T1W1 = [],[],[],[]
for song in arange(len(a0)):
# per-song precision / recall
idx = setdiff1d(arange(len(a0)),[song])
train0=dB(array([a for a in flatten(a0[idx])]))
train1=dB(array([a for a in flatten(a1[idx])]))
test0=dB(array([a for a in flatten(a0[song])]))
test1=dB(array([a for a in flatten(a1[song])]))
if use_pca:
u,s,v = svd(array([train0,train1]).T,0)
train0 = u[:,0]
train1 = u[:,1]
test = array([test0,test1]).T
test = dot(dot(test,v.T),diag(1./s))
test0 = test[:,0]
test1 = test[:,1]
m0,v0 = train0.mean(),train0.var()
m1,v1 = train1.mean(),train1.var()
P.append(len(test0))
t1w0,t1w1 = log(eval_gauss(test1,m0,v0)+eps), log(eval_gauss(test1,m1,v1)+eps)
t0w0,t0w1 = log(eval_gauss(test0,m0,v0)+eps), log(eval_gauss(test0,m1,v1)+eps)
if clip!=0:
t1w0[t1w0<clip]=clip
t1w1[t1w1<clip]=clip
t0w0[t0w0<clip]=clip
t0w1[t0w1<clip]=clip
T0W0.append(t0w0)
T0W1.append(t0w1)
T1W0.append(t1w0)
T1W1.append(t1w1)
TP.append(sum(t1w1>t1w0))
FN.append(sum(t1w1<=t1w0))
FP.append(sum(t0w1>t0w0))
TN.append(sum(t0w1<=t0w0))
prec,rec = calc_precrec(t0w0,t0w1,t1w0,t1w1,null_clf)
PR.append(prec)
RE.append(rec)
F = calc_fscore(RE,PR)
return {'P':array(P),'TP':array(TP),'FN':array(FN),'FP':array(FP),'TN':array(TN),
'PR':PR,'RE':RE,'F':F, 'T0W0':T0W0,'T0W1':T0W1,'T1W0':T1W0,'T1W1':T1W1}
def plot_evaluation(stats, N=10.):
figure()
PR = array(zip(flatten(stats['RE']),flatten(stats['PR'])))
PR[:,0] = fix(PR[:,0]*N)/float(N) # divide recall into deciles
precrec = []
for re in unique(PR[:,0]):
p = PR[:,1][where(PR[:,0]==re)]
precrec.append((re,p.mean(),p.std()/sqrt(len(p))))
errorbar(x=re,y=p.mean(),yerr=p.std()/sqrt(len(p)),color='b')
plot(re,p.mean(),'bx')
precrec=array(precrec)
plot(precrec[:,0],precrec[:,1],'b--')
axis([-0.05,1.05,0,1.05])
grid()
title('ROC autotuned/non-tuned classifier',fontsize=20)
xlabel('Recall (standardized deciles)', fontsize=16)
ylabel('Precision', fontsize=16)
text(.85,.95,'F1=%.2f'%stats['F'],fontsize=16)
return precrec