-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathaae_training.py
541 lines (453 loc) · 24 KB
/
aae_training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
import time
import datetime
import cv2
import json
import os
import matplotlib.pyplot as plt
import numpy as np
import torch
import torch.utils.data as td
import torch.nn.modules.distance
import torch.optim as optim
from csl_common import vis
from csl_common.utils import nn, io_utils
from csl_common.utils.nn import to_numpy, Batch, set_requires_grad
import csl_common.utils.log as log
from csl_common.metrics import ssim as pytorch_msssim
from constants import TRAIN, VAL
import config as cfg
from networks.aae import vis_reconstruction
from skimage.metrics import structural_similarity as compare_ssim
import sklearn.utils
eps = 1e-8
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
ENCODING_DISTRIBUTION = 'normal'
# save some samples to visualize the training progress
def get_fixed_samples(ds, num):
dl = td.DataLoader(ds, batch_size=num, shuffle=False, num_workers=0)
data = next(iter(dl))
return Batch(data, n=num)
def __reduce(errs, reduction):
if reduction == 'mean':
return errs.mean()
elif reduction == 'sum':
return errs.sum()
elif reduction == 'none':
return errs
else:
raise ValueError("Invalid parameter reduction={}".format(reduction))
def create_interpolated_vectors(v1, v2, nsteps, mode='real2real'):
assert len(v1.shape) == 2
assert len(v2.shape) == 2
assert nsteps >= 2
if mode == 'real2real':
st = v1
nd = v2
elif mode == 'real2random':
st = v1
nd = torch.randn_like(v2)
elif mode == 'random2random':
st = torch.randn_like(v1)
nd = torch.randn_like(v2)
else:
raise ValueError(f"Unknow mode {mode}")
# vector_dims = len(v1)
nsamples = v1.shape[0]
vector_dims = v1.shape[1]
z_new = torch.zeros((nsteps, nsamples, vector_dims)).float()
for i in range(nsteps):
z_new[i] = st + (nd - st)/(nsteps-1) * i
return z_new
def loss_recon(X, X_recon, reduction='mean'):
diff = torch.abs(X - X_recon) * 255
l1_dist_per_img = diff.reshape(len(X), -1).mean(dim=1)
return __reduce(l1_dist_per_img, reduction)
def loss_struct(X, X_recon, torch_ssim, calc_error_maps=False, reduction='mean'):
cs_error_maps = []
nimgs = len(X)
errs = torch.zeros(nimgs, requires_grad=True).cuda()
for i in range(nimgs):
errs[i] = 1.0 - torch_ssim(X[i].unsqueeze(0), X_recon[i].unsqueeze(0))
if calc_error_maps:
cs_error_maps.append(1.0 - to_numpy(torch_ssim.cs_map))
loss = __reduce(errs, reduction)
if calc_error_maps:
return loss, np.vstack(cs_error_maps)
else:
return loss, None
def calc_ssim(X, X_recon):
ssim = np.zeros(len(X))
input_images = vis.to_disp_images(X, denorm=True)
recon_images = vis.to_disp_images(X_recon, denorm=True)
for i in range(len(X)):
data_range = 255.0 if input_images[0].dtype == np.uint8 else 1.0
ssim[i] = compare_ssim(input_images[i],
recon_images[i],
data_range=data_range,
multichannel=True)
return ssim
def weights_init(m):
if isinstance(m, torch.nn.Linear):
torch.nn.init.xavier_uniform(m.weight.data)
torch.nn.init.xavier_uniform(m)
if isinstance(m, torch.nn.Conv2d):
torch.nn.init.xavier_uniform(m.weight)
class AAETraining(object):
def __init__(self, datasets, args, session_name='debug', snapshot_dir=cfg.SNAPSHOT_DIR,
snapshot_interval=5, workers=6, macro_batch_size=20, wait=10):
self.args = args
self.session_name = session_name
self.datasets = datasets
self.macro_batch_size = macro_batch_size
self.workers = workers
self.ssim = pytorch_msssim.SSIM(window_size=31)
self.wait = wait
self.saae = self._get_network(pretrained=False)
print("Learning rate: {}".format(self.args.lr))
self.snapshot_dir = snapshot_dir
self.total_iter = 0
self.total_images = 0
self.iter_in_epoch = 0
self.epoch = 0
self.best_score = 999
self.epoch_stats = []
self.snapshot_interval = snapshot_interval
if ENCODING_DISTRIBUTION == 'normal':
self.enc_rand = torch.randn
self.enc_rand_like = torch.randn_like
elif ENCODING_DISTRIBUTION == 'uniform':
self.enc_rand = torch.rand
self.enc_rand_like = torch.rand_like
else:
raise ValueError()
self.total_training_time_previous = 0
self.time_start_training = time.time()
snapshot = args.resume
if snapshot is not None:
log.info("Resuming session {} from snapshot {}...".format(self.session_name, snapshot))
self._load_snapshot(snapshot)
# reset discriminator
if args.reset:
self.saae.D.apply(weights_init)
# Set optimizators
betas = (self.args.beta1, self.args.beta2)
Q_params = list(filter(lambda p: p.requires_grad, self.saae.Q.parameters()))
self.optimizer_E = optim.Adam(Q_params, lr=args.lr, betas=betas)
self.optimizer_G = optim.Adam(self.saae.P.parameters(), lr=args.lr, betas=betas)
self.optimizer_D_z = optim.Adam(self.saae.D_z.parameters(), lr=args.lr, betas=betas)
self.optimizer_D = optim.Adam(self.saae.D.parameters(), lr=args.lr*0.5, betas=betas)
n_fixed_images = 10
self.fixed_batch = {}
for phase in datasets.keys():
self.fixed_batch[phase] = get_fixed_samples(datasets[phase], n_fixed_images)
def _get_network(self, pretrained):
raise NotImplementedError
@staticmethod
def _create_weighted_sampler(dataset):
def _calc_weights_for_profile_faces():
bbox_aspect_ratios = dataset.widths / dataset.heights
print('Num. profile images: ', np.count_nonzero(bbox_aspect_ratios < 0.65))
_weights = np.ones_like(bbox_aspect_ratios, dtype=np.float32)
_weights[bbox_aspect_ratios < 0.65] = 10
return _weights
sample_weights = _calc_weights_for_profile_faces()
return torch.utils.data.WeightedRandomSampler(sample_weights, len(sample_weights), replacement=True)
@staticmethod
def _create_weighted_cross_entropy_loss(affectnet_dataset):
_weights = 1.0 / affectnet_dataset.get_class_sizes()
if _weights[7] > 1.0: _weights[7] = 0
_weights = _weights.astype(np.float32)
_weights /= np.sum(_weights)
log.info("AffectNet weights: {}".format(_weights))
return torch.nn.CrossEntropyLoss(weight=torch.from_numpy(_weights).to(device))
def _save_snapshot(self, is_best=False):
def write_model(out_dir, model_name, model):
filepath_mdl = os.path.join(out_dir, model_name+'.mdl')
snapshot = {
'arch': type(model).__name__,
'z_dim': model.z_dim,
'input_size': model.input_size,
'state_dict': model.state_dict(),
}
io_utils.makedirs(filepath_mdl)
torch.save(snapshot, filepath_mdl)
def write_meta(out_dir):
with open(os.path.join(out_dir, 'meta.json'), 'w') as outfile:
data = {'epoch': self.epoch+1,
'total_iter': self.total_iter,
'total_images': self.total_images,
'total_time': self.total_training_time(),
'best_score': self.best_score}
json.dump(data, outfile)
model_data_dir = os.path.join(self.snapshot_dir, self.session_name)
model_snap_dir = os.path.join(model_data_dir, '{:05d}'.format(self.epoch+1))
write_model(model_snap_dir, 'saae', self.saae)
# write_model(model_snap_dir, 'encoder', self.saae.Q.model)
write_meta(model_snap_dir)
# save a copy of this snapshot as the best one so far
if is_best:
io_utils.copy_files(src_dir=model_snap_dir, dst_dir=model_data_dir, pattern='*.mdl')
def _load_snapshot(self, snapshot_name, data_dir=None):
if data_dir is None:
data_dir = self.snapshot_dir
model_snap_dir = os.path.join(data_dir, snapshot_name)
try:
nn.read_model(model_snap_dir, 'saae', self.saae)
except KeyError as e:
print(e)
meta = nn.read_meta(model_snap_dir)
self.epoch = meta['epoch']
self.total_iter = meta['total_iter']
self.total_training_time_previous = meta.get('total_time', 0)
self.total_images = meta.get('total_images', 0)
self.best_score = meta['best_score']
self.saae.total_iter = self.total_iter
str_training_time = str(datetime.timedelta(seconds=self.total_training_time()))
log.info("Model {} trained for {} iterations ({}).".format(snapshot_name, self.total_iter, str_training_time))
def _is_snapshot_iter(self):
return (self.total_iter+1) % self.snapshot_interval == 0 and (self.total_iter+1) > 0
def _print_interval(self, eval):
return self.args.print_freq_eval if eval else self.args.print_freq
def _is_printout_iter(self, eval):
return (self.iter_in_epoch+1) % self._print_interval(eval) == 0
def _is_eval_epoch(self):
return (self.epoch+1) % self.args.eval_freq == 0 and VAL in self.datasets
def _training_time(self):
return int(time.time() - self.time_start_training)
def total_training_time(self):
return self.total_training_time_previous + self._training_time()
def update_encoding(self, z_sample):
stats = {}
# Discriminator
if self.iter_in_epoch % 4 == 0:
z_real = self.enc_rand_like(z_sample).to(device)
D_real = self.saae.D_z(z_real)
D_fake = self.saae.D_z(z_sample.detach())
loss_D_z = -torch.mean(torch.log(D_real + eps) + torch.log(1 - D_fake + eps))
loss_D_z.backward()
self.optimizer_D_z.step()
stats['loss_D_z'] = loss_D_z.item()
# Encoder gaussian loss
if self.iter_in_epoch % 2 == 0:
D_fake = self.saae.D_z(z_sample)
loss_E = -torch.mean(torch.log(D_fake + eps))
loss_E.backward(retain_graph=True)
stats['loss_E'] = loss_E.item()
return stats
def update_gan(self, X_target, X_recon, z_sample, train=True, with_gen_loss=False, w_gen=0.25, X_gen=None):
stats = {}
if with_gen_loss:
# Generate images by interpolating between reals
# z_noise = self.enc_rand(len(z_sample), z_sample.shape[1]).to(device)
# dist = np.random.random(1)[0]
# z_random = z_sample + (z_noise - z_sample) * dist
# X_gen = self.saae.P(z_random)[:, :3]
# z_sample = z_sample.detach()
# z_noise = self.enc_rand(len(z_sample), z_sample.shape[1]).to(device)
# Generate some random images
rand_ids = sklearn.utils.shuffle(range(len(z_sample)))
z_noise = z_sample[rand_ids]
gamma = 1.0
dist = torch.rand((len(z_sample),1)).cuda() ** gamma
z_random = z_sample + (z_noise - z_sample) * dist
X_gen = self.saae.P(z_random)[:, :3]
# update discriminator
if self.iter_in_epoch % self.args.update_D_freq == 0:
self.saae.D.zero_grad()
err_real = self.saae.D(X_target)
err_fake = self.saae.D(X_recon.detach())
err_fake = err_fake[sklearn.utils.shuffle(range(len(err_fake)))]
assert(len(err_real) == len(X_target))
loss_D = -torch.mean(torch.log(err_real + eps) + torch.log(1.0 - err_fake + eps))
if with_gen_loss:
err_fake_gen = self.saae.D(X_gen.detach())
loss_D_gen = -torch.mean(torch.log(err_real + eps) + torch.log(1.0 - err_fake_gen + eps))
loss_D = loss_D*(1-w_gen) + loss_D_gen*w_gen
stats.update({'loss_D_rec': loss_D.item(), 'loss_D_gen': loss_D_gen.item()})
if train:
loss_D.backward()
self.optimizer_D.step()
stats.update({'loss_D': loss_D.item(), 'err_real': err_real.mean().item()})
# update E
if self.iter_in_epoch % self.args.update_E_freq == 0:
self.saae.D.zero_grad()
set_requires_grad(self.saae.D, False)
err_G_random = self.saae.D(X_recon)
loss_G_rec = -torch.mean(torch.log(err_G_random + eps))
if with_gen_loss:
err_G_gen = self.saae.D(X_gen)
loss_G_gen = -torch.mean(torch.log(err_G_gen + eps))
loss_G = loss_G_rec*(1-w_gen) + loss_G_gen*w_gen
stats.update({'loss_G_rec': loss_G_rec.item(), 'loss_G_gen': loss_G_gen.item()})
else:
loss_G = loss_G_rec
set_requires_grad(self.saae.D, True)
stats.update({'loss_G': loss_G.item(), 'err_fake': loss_G.mean().item()})
return stats, loss_G
#
# Visualizations
#
def generate_images(self, z):
train_state_D = self.saae.D.training
train_state_P = self.saae.P.training
self.saae.D.eval()
self.saae.P.eval()
loc_err_gan = 'tr'
with torch.no_grad():
X_gen_vis = self.saae.P(z)[:, :3]
err_gan_gen = self.saae.D(X_gen_vis)
imgs = vis.to_disp_images(X_gen_vis, denorm=True)
self.saae.D.train(train_state_D)
self.saae.P.train(train_state_P)
return vis.add_error_to_images(imgs, errors=1 - err_gan_gen, loc=loc_err_gan, format_string='{:.2f}', vmax=1.0)
def visualize_interpolations(self, Z, nimgs=1, ninterp=8, target_id=-1, wait=10):
rows = []
z_morph_target = Z[target_id]
for st in range(nimgs):
ZI = create_interpolated_vectors(Z[st].unsqueeze(0), z_morph_target.unsqueeze(0),
nsteps=ninterp, mode='real2real').cuda()
disp_interp = self.generate_images(ZI)
rows.append(vis.make_grid(disp_interp, nCols=ninterp))
disp_rows = vis.make_grid(rows, nCols=1, normalize=False, fx=1.0, fy=1.0)
cv2.imshow("interpolations", cv2.cvtColor(disp_rows, cv2.COLOR_RGB2BGR))
cv2.waitKey(wait)
def visualize_random_images(self, nimgs=8, wait=10, z_real=None, real_dist=0.5):
z_random = self.enc_rand(nimgs, self.saae.z_dim).to(device)
# z_random = torch.nn.functional.normalize(z_random, dim=1)
disp_random = self.generate_images(z_random)
rows = [vis.make_grid(disp_random, nCols=nimgs)]
if z_real is not None:
z_real_noise = z_real[:nimgs] + (z_random - z_real[:nimgs])*real_dist
disp_real_noise = self.generate_images(z_real_noise)
rows.append(vis.make_grid(disp_real_noise, nCols=nimgs))
disp_rows = vis.make_grid(rows, nCols=1, normalize=False)
cv2.imshow("random images", cv2.cvtColor(disp_rows, cv2.COLOR_RGB2BGR))
cv2.waitKey(wait)
def visualize_batch(self, batch, X_recon, ssim_maps, nimgs=8, ds=None, wait=0):
nimgs = min(nimgs, len(batch))
train_state_D = self.saae.D.training
train_state_Q = self.saae.Q.training
train_state_P = self.saae.P.training
self.saae.D.eval()
self.saae.Q.eval()
self.saae.P.eval()
loc_err_gan = 'tr'
text_size_errors = 0.65
input_images = vis.to_disp_images(batch.images[:nimgs], denorm=True)
target_images = batch.target_images if batch.target_images is not None else batch.images
disp_images = vis.to_disp_images(target_images[:nimgs], denorm=True)
# draw GAN score
if self.args.with_gan:
with torch.no_grad():
err_gan_inputs = self.saae.D(batch.images[:nimgs])
disp_images = vis.add_error_to_images(disp_images, errors=1-err_gan_inputs, loc=loc_err_gan,
format_string='{:>5.2f}', vmax=1.0)
# disp_images = vis.add_landmarks_to_images(disp_images, batch.landmarks[:nimgs], color=(0,1,0), radius=1,
# draw_wireframe=False)
rows = [vis.make_grid(disp_images, nCols=nimgs, normalize=False)]
recon_images = vis.to_disp_images(X_recon[:nimgs], denorm=True)
disp_X_recon = recon_images.copy()
print_stats = True
if print_stats:
# lm_ssim_errs = None
# if batch.landmarks is not None:
# lm_recon_errs = lmutils.calc_landmark_recon_error(batch.images[:nimgs], X_recon[:nimgs], batch.landmarks[:nimgs], reduction='none')
# disp_X_recon = vis.add_error_to_images(disp_X_recon, lm_recon_errs, size=text_size_errors, loc='bm',
# format_string='({:>3.1f})', vmin=0, vmax=10)
# lm_ssim_errs = lmutils.calc_landmark_ssim_error(batch.images[:nimgs], X_recon[:nimgs], batch.landmarks[:nimgs])
# disp_X_recon = vis.add_error_to_images(disp_X_recon, lm_ssim_errs.mean(axis=1), size=text_size_errors, loc='bm-1',
# format_string='({:>3.2f})', vmin=0.2, vmax=0.8)
X_recon_errs = 255.0 * torch.abs(batch.images - X_recon).reshape(len(batch.images), -1).mean(dim=1)
# disp_X_recon = vis.add_landmarks_to_images(disp_X_recon, batch.landmarks[:nimgs], radius=1, color=None,
# lm_errs=lm_ssim_errs, draw_wireframe=False)
disp_X_recon = vis.add_error_to_images(disp_X_recon[:nimgs], errors=X_recon_errs, size=text_size_errors, format_string='{:>4.1f}')
if self.args.with_gan:
with torch.no_grad():
err_gan = self.saae.D(X_recon[:nimgs])
disp_X_recon = vis.add_error_to_images(disp_X_recon, errors=1 - err_gan, loc=loc_err_gan, format_string='{:>5.2f}', vmax=1.0)
ssim = np.zeros(nimgs)
for i in range(nimgs):
data_range = 255.0 if input_images[0].dtype == np.uint8 else 1.0
ssim[i] = compare_ssim(input_images[i], recon_images[i], data_range=data_range, multichannel=True)
disp_X_recon = vis.add_error_to_images(disp_X_recon, 1 - ssim, loc='bl-1', size=text_size_errors, format_string='{:>4.2f}', vmin=0.2, vmax=0.8)
if ssim_maps is not None:
disp_X_recon = vis.add_error_to_images(disp_X_recon, ssim_maps.reshape(len(ssim_maps), -1).mean(axis=1),
size=text_size_errors, loc='bl-2', format_string='{:>4.2f}', vmin=0.0, vmax=0.4)
rows.append(vis.make_grid(disp_X_recon, nCols=nimgs))
if ssim_maps is not None:
disp_ssim_maps = to_numpy(nn.denormalized(ssim_maps)[:nimgs].transpose(0, 2, 3, 1))
for i in range(len(disp_ssim_maps)):
disp_ssim_maps[i] = vis.color_map(disp_ssim_maps[i].mean(axis=2), vmin=0.0, vmax=2.0)
grid_ssim_maps = vis.make_grid(disp_ssim_maps, nCols=nimgs)
cv2.imshow('ssim errors', cv2.cvtColor(grid_ssim_maps, cv2.COLOR_RGB2BGR))
self.saae.D.train(train_state_D)
self.saae.Q.train(train_state_Q)
self.saae.P.train(train_state_P)
f = 1
disp_rows = vis.make_grid(rows, nCols=1, normalize=False, fx=f, fy=f)
wnd_title = 'recon errors '
if ds is not None:
wnd_title += ds.__class__.__name__
cv2.imshow(wnd_title, cv2.cvtColor(disp_rows, cv2.COLOR_RGB2BGR))
cv2.waitKey(wait)
def reconstruct_fixed_samples(self):
out_dir = os.path.join(cfg.REPORT_DIR, 'reconstructions', self.session_name)
# reconstruct some fixed images from training and validation set (if available)
for phase, b in self.fixed_batch.items():
b = self.fixed_batch[phase]
f = 1 if b.images.shape[-1] < 512 else 0.5
img = vis_reconstruction(self.saae,
b.images,
landmarks=b.landmarks,
ncols=5,
fx=f, fy=f)
filename = f'reconst_{phase}-{self.session_name}_{self.epoch+1}.jpg'
img_filepath = os.path.join(out_dir, phase, filename)
io_utils.makedirs(img_filepath)
cv2.imwrite(img_filepath, cv2.cvtColor(img, cv2.COLOR_RGB2BGR))
def bool_str(x):
return str(x).lower() in ['True', 'true', '1']
def add_arguments(parser, defaults=None):
if defaults is None:
defaults = {}
# model params
parser.add_argument('--sessionname', default=None, type=str, help='output filename (without ext)')
parser.add_argument('-r', '--resume', default=None, type=str, metavar='PATH', help='path to snapshot (default: None)')
parser.add_argument('-z','--embedding-dims', default=99, type=int, help='dimensionality of embedding ')
parser.add_argument('-i','--input-size', default=256, type=int, help='CNN input size')
# training
parser.add_argument('--train-encoder', type=bool_str, default=defaults.get('train_encoder', True),
help='include encoder update in training ')
parser.add_argument('--train-decoder', type=bool_str, default=defaults.get('train_decoder', True),
help='include decoder update in training ')
parser.add_argument('--seed', type=int, default=None)
parser.add_argument('-e', '--epochs', default=None, type=int, metavar='N', help='maximum epoch count')
parser.add_argument('-b', '--batchsize', default=defaults.get('batchsize', 50), type=int, metavar='N', help='batch size')
parser.add_argument('--eval', default=False, action='store_true', help='run evaluation instead of training')
parser.add_argument('--phases', default=[TRAIN, VAL], nargs='+')
parser.add_argument('--reset', default=False, action='store_true', help='reset the discriminator')
parser.add_argument('--lr', default=0.00002, type=float, help='learning rate for autoencoder')
parser.add_argument('--beta1', default=0.0, type=float, help='Adam beta 1')
parser.add_argument('--beta2', default=0.999, type=float, help='Adam beta 2')
# reporting
parser.add_argument('--save-freq', default=1, type=int, metavar='N', help='save snapshot every N epochs')
parser.add_argument('--print-freq', '-p', default=50, type=int, metavar='N', help='print every N steps')
parser.add_argument('--print-freq-eval', default=1, type=int, metavar='N', help='print every N steps')
parser.add_argument('--eval-freq', default=10, type=int, metavar='N', help='evaluate every N steps')
parser.add_argument('--batchsize-eval', default=20, type=int, metavar='N', help='batch size for evaluation')
# data
parser.add_argument('--use-cache', type=bool_str, default=True, help='use cached crops')
parser.add_argument('--train-count', default=None, type=int, help='number of training images per dataset')
parser.add_argument('--train-count-multi', default=None, type=int,
help='number of total training images for training using multiple datasets')
parser.add_argument('--st', default=None, type=int, help='skip first n training images')
parser.add_argument('--val-count', default=None, type=int, help='number of test images')
parser.add_argument('--daug', type=int, default=0, help='level of data augmentation for training')
parser.add_argument('--align', type=bool_str, default=False, help='rotate crop so eyes are horizontal')
parser.add_argument('--occ', type=bool_str, default=False, help='add occlusions to target images')
parser.add_argument('--crop-source', type=str, default='bb_ground_truth', help='crop images using bounding boxes or landmarks')
parser.add_argument('-j', '--workers', default=6, type=int, metavar='N', help='number of data loading workers (default: 6)')
# visualization
parser.add_argument('--show', type=bool_str, default=True, help='visualize training')
parser.add_argument('--show-random-faces', default=False, action='store_true')
parser.add_argument('--wait', default=10, type=int)