forked from TheAlgorithms/Python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathextended_euclidean_algorithm.py
72 lines (58 loc) · 1.29 KB
/
extended_euclidean_algorithm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
"""
Extended Euclidean Algorithm.
Finds 2 numbers a and b such that it satisfies
the equation am + bn = gcd(m, n) (a.k.a Bezout's Identity)
"""
# @Author: S. Sharma <silentcat>
# @Date: 2019-02-25T12:08:53-06:00
# @Email: [email protected]
# @Last modified by: PatOnTheBack
# @Last modified time: 2019-07-05
import sys
def extended_euclidean_algorithm(m, n):
"""
Extended Euclidean Algorithm.
Finds 2 numbers a and b such that it satisfies
the equation am + bn = gcd(m, n) (a.k.a Bezout's Identity)
"""
a = 0
a_prime = 1
b = 1
b_prime = 0
q = 0
r = 0
if m > n:
c = m
d = n
else:
c = n
d = m
while True:
q = int(c / d)
r = c % d
if r == 0:
break
c = d
d = r
t = a_prime
a_prime = a
a = t - q * a
t = b_prime
b_prime = b
b = t - q * b
pair = None
if m > n:
pair = (a, b)
else:
pair = (b, a)
return pair
def main():
"""Call Extended Euclidean Algorithm."""
if len(sys.argv) < 3:
print("2 integer arguments required")
exit(1)
m = int(sys.argv[1])
n = int(sys.argv[2])
print(extended_euclidean_algorithm(m, n))
if __name__ == "__main__":
main()