Skip to content

Latest commit

 

History

History
992 lines (790 loc) · 35.2 KB

README.md

File metadata and controls

992 lines (790 loc) · 35.2 KB

AceTime for C

ACUnit Tests

The acetimec library is a date and time zone library for the C language, based on algorithms and techniques from the AceTime library for the Arduino environment. Just like AceTime, this library supports all time zones defined by the IANA TZ database.

The functionality provided by acetimec is a subset of the AceTime, mostly because the C language does not provide the same level of abstraction and encapsulation of the C++ language. If the equivalent functionality of AceTime was attempted in this library, the public API would become too large and complex, with diminishing returns from the increased complexity. I decided that this library would implement the only algorithms provided by the ExtendedZoneProcessor class of the AceTime library. It does not implement the functionality provided by the BasicZoneProcessor of the AceTime library.

Due to time constraints, this README document provides only a small fraction of the documentation provided by the README.md and USER_GUIDE.md documents of the AceTime library. If you need more detailed information, please consult those latter documents.

Status: Alpha-level software, not ready for public consumption.

Version: 0.12.0 (2024-12-14, TZDB 2024b)

Changelog: CHANGELOG.md

Table of Contents

Example

The expected usage is something like this:

#include <stdio.h>
#include <acetimec.h>

AtcZoneProcessor processor_la; // Los Angeles
AtcZoneProcessor processor_ny; // New York

void setup()
{
  atc_processor_init(&processor_la);
  atc_processor_init(&processor_ny);
}

void print_dates()
{
  printf("======== ZonedDateTime from epoch seconds\n");

  atc_time_t seconds = 3432423;
  printf("Epoch Seconds: %ld\n", (long) seconds);

  // Convert epoch seconds to date/time components for given time zone.
  AtcTimeZone tzla = {&kAtcZoneAmerica_Los_Angeles, &processor_la};
  AtcZonedDateTime zdtla;
  atc_zoned_date_time_from_epoch_seconds(&zdtla, seconds, &tzla);
  if (atc_zoned_date_time_is_error(&zdtla)) { ... }

  // Print the date for Los Angeles.
  char buf[80];
  struct AtcStringBuffer sb;
  atc_buf_init(&sb, buf, 80);
  atc_zoned_date_time_print(&sb, &zdtla);
  atc_buf_close(&sb);
  printf("Los Angeles: %s\n", sb.p);

  // Convert zoned_date_time to back to epoch seconds.
  atc_time_t epoch_seconds = atc_zoned_date_time_to_epoch_seconds(&zdtla);
  if (epoch_seconds == kAtcInvalidEpochSeconds) { ... }
  if (seconds != epoch_seconds) { ... }
  printf("Converted Seconds: %ld\n", (long) epoch_seconds);

  printf("======== ZonedDateTime from LocalDateTime\n");

  // Start with a LocalDateTime in an overlap, fold=1 for the second one.
  AtcLocalDateTime ldt = {2022, 11, 6, 1, 30, 0, 1 /*fold*/};
  atc_buf_reset(&sb);
  atc_local_date_time_print(&sb, &ldt);
  atc_buf_close(&sb);
  printf("LocalDateTime: %s\n", sb.p);
  printf("fold: 1\n");

  // Convert components to zoned_date_time. 2022-11-06 01:30 occurred twice. Set
  // fold=1 to select the second occurrence.
  atc_zoned_date_time_from_local_date_time(&zdtla, &ldt, &tzla);
  if (atc_zoned_date_time_is_error(&zdtla)) { ... }

  // Print the date time.
  atc_buf_reset(&sb);
  atc_zoned_date_time_print(&sb, &zdtla);
  atc_buf_close(&sb);
  printf("Los Angeles: %s\n", sb.p);
  epoch_seconds = atc_zoned_date_time_to_epoch_seconds(&zdtla);
  printf("Epoch Seconds: %ld\n", (long) epoch_seconds);

  printf("======== ZonedDateTime to different time zone\n");

  // convert America/Los_Angles to America/New_York
  AtcTimeZone tzny = {&kAtcZoneAmerica_New_York, &processor_ny};
  AtcZonedDateTime zdtny;
  atc_zoned_date_time_convert(&zdtla, tzny, &zdtny);
  if (atc_zoned_date_time_is_error(&zdtla)) { ... }

  atc_buf_reset(&sb);
  atc_zoned_date_time_print(&sb, zdtny);
  atc_buf_close(&sb);
  printf("New York: %s\n", sb.p);
  epoch_seconds = atc_zoned_date_time_to_epoch_seconds(&zdtla);
  printf("Epoch Seconds: %ld\n", (long) epoch_seconds);
}

int main(int argc, char **argv)
{
  (void) argc;
  (void) argv;
  setup();
  print_dates();
}

The complete example at examples/hello_acetime.c prints the following:

======== ZonedDateTime from epoch seconds
Epoch Seconds: 3432423
Los Angeles: 2050-02-09T09:27:03-08:00[America/Los_Angeles]
Converted Seconds: 3432423
======== ZonedDateTime from LocalDateTime
LocalDateTime: 2022-11-06T01:30:00
fold: 1
Los Angeles: 2022-11-06T01:30:00-08:00[America/Los_Angeles]
Epoch Seconds: -856881000
======== ZonedDateTime to different time zone
New York: 2022-11-06T04:30:00-05:00[America/New_York]
Epoch Seconds: -856881000

Installation

I am not familiar with any of the C language package managers. To obtain this library, you should manually clone the project into an appropriate place on your computer:

$ git clone https://github.com/bxparks/acetimec

There are many different ways that a C library can be incorporated into an existing project, depending the platform. I do almost all my development on a Linux box, so I provide the following infrastructure:

  • The ./src/Makefile provides a target $ make acetimec.a which compiles the *.c files to *.o files, then collects these object files into a static library named ./src/acetimec.a.
  • Downstream applications can link to this static library. This can be done by passing the ./src/acetimec.a file to the linker.
  • Downstream application source code needs to include the ./src/acetimec.h header file. This can be done using the -I flag to the compiler.

Usage

Header File

The header file must be included like this:

#include <acetimec.h>

Constants

A number of constants are provided by this library:

  • kAtcErrOk (0)
    • indicates success of a function
  • kAtcErrGeneric (1)
    • indicates a generic failure of a function
  • kAtcInvalidYear
    • INT16_MIN (-32736)
    • indicates an invalid year
  • kAtcInvalidEpochSeconds
    • INT32_MIN (-2147483648)
    • indicates an invalid epoch seconds
  • ISO Weekdays
    • kAtcIsoWeekdayMonday (1)
    • kAtcIsoWeekdayTuesday
    • kAtcIsoWeekdayWednesday
    • kAtcIsoWeekdayThursday
    • kAtcIsoWeekdayFriday
    • kAtcIsoWeekdaySaturday
    • kAtcIsoWeekdaySunday (7)

atc_time_t

The library defines an atc_time_t type which is analogous to the normal time_t from the standard C library. (The POSIX standard reserves all symbols which end with _t. But the atc_time_t is so close to the time_t type that I felt that it would be more confusing to name it something like AtcTimeT.)

typedef int32_t atc_time_t;

It is a signed, 32-bit integer that counts the number of POSIX seconds from the epoch of this library. That epoch will normally be 2050-01-01 00:00:00 UTC, instead of the POSIX standard of 1970-01-01 00:00:00 UTC. That means that largest date that can be represented by atc_time_t is 2118-01-20 03:14:07 UTC.

The current epoch year can be changed using the atc_set_current_epoch_year() as described in the next section.

Epoch

The functions in epoch.h provide features related to the epoch used by the acetimec library. By default, the epoch is 2050-01-01 00:00:00 UTC, which allows the 32-bit ace_time_t type to support dates from the year 2000 until the year 2100, at a minimum. However, unlike most timezone libraries, the epoch year can be changed at runtime so that the ace_time_t can be used to support any dates within approximately +/- 50 years of the epoch year.

The following functions are used to get and set the epoch year:

  • int16_t atc_get_current_epoch_year(void)
    • Returns the current epoch year.
  • void atc_set_current_epoch_year(int16_t year)
    • Sets the current epoch year to year.

Warning: If the epoch year is changed using the atc_set_current_epoch_year() function, then the atc_processor_init() function (see AtcZoneProcessor) must be called to reinitialize any instance of AtcZoneProcessor that may have used a different epoch year.

The following convenience functions return the range of validity of the ace_time_t type:

  • int16_t atc_epoch_valid_year_lower(void)
    • Returns the lower bound of the year that can be represented by ace_time_t.
    • This currently returns epoch_year - 50 as a conservative estimate.
    • The actual lower bound is 10-15 years higher, and a future version of the library may update the value returned by this function.
  • int16_t atc_epoch_valid_year_upper(void)
    • Returns the upper bound of the year that can be represented by ace_time_t.
    • This currently returns epoch_year + 50 as a conservative estimate.
    • The actual upper bound is 10-15 years higher, and a future version of the library may update the value returned by this function.

The following are low level internal functions that convert a given (year, month, day) triple in the proleptic Gregorian calendar to the number of days from an arbitrary, but fixed, internal epoch date (currently the year 2000). They are used as the basis for converting the Gregorian date to the number of offset days from the user-adjustable epoch year. They are not expected to be used by client applications.

  • int32_t atc_convert_to_days(int16_t year, uint8_t month, uint8_t day)
  • void atc_convert_from_days(int16_t days, uint8_t *year, uint8_t *month, uint8_t *day)

LocalDate

The functions in local_date.h provide features related to the Gregorian (year, month, day) triple. These functions do not know about the time components (hour, minute, second) or the timezone. They often represent either the local date, or the UTC date, depending on context.

  • bool atc_is_leap_year(int16_t year)
    • Returns true if the given year is a leap year in the Gregorian calendar.
  • uint8_t atc_local_date_days_in_year_month(int16_t year, uint8_t month)
    • Returns the number of days in the given (year, month) pair.

The atc_local_date_day_of_week() returns the ISO day of week of the given (year, month, day) date. The ISO weekday starts with Monday as 1, and ending with Sunday as 7:

enum {
  kAtcIsoWeekdayMonday = 1,
  kAtcIsoWeekdayTuesday,
  kAtcIsoWeekdayWednesday,
  kAtcIsoWeekdayThursday,
  kAtcIsoWeekdayFriday,
  kAtcIsoWeekdaySaturday,
  kAtcIsoWeekdaySunday,
};

uint8_t atc_local_date_day_of_week(int16_t year, uint8_t month, uint8_t day)`

The following 2 functions convert the Gregorian date to and from the number of days from the current epoch (given by atc_get_current_epoch_year()). These functions should return the correct value for any year in the range of 0 < year < 10000, but no validation is performed for invalid dates. For example, the behavior is undefined for Feb 30 which is an invalid date.

int32_t atc_local_date_to_epoch_days(
    int16_t year, uint8_t month, uint8_t day);

void atc_local_date_from_epoch_days(
    int32_t epoch_days,
    int16_t *year,
    uint8_t *month,
    uint8_t *day);

The following functions increment and decrement the date by one day:

void atc_local_date_increment_one_day(
    int16_t *year, uint8_t *month, uint8_t *day);

void atc_local_date_decrement_one_day(
    int16_t *year, uint8_t *month, uint8_t *day);

LocalTime

The local_time.h file contains functions related to the local (hour, minute, second). Currently a single function is provided:

int32_t atc_local_time_to_seconds(uint8_t hour, uint8_t minute, uint8_t second);

AtcLocalDateTime

The functions in local_date_time.h operate on the AtcLocalDateTime type which represents the wall date and time, without reference to a time zone:

typedef struct AtcLocalDateTime {
  int16_t year;
  uint8_t month;
  uint8_t day;
  uint8_t hour;
  uint8_t minute;
  uint8_t second;
  uint8_t fold;
} AtcLocalDateTime;

Here are the functions which operate on this data type:

void atc_local_date_time_set_error(AtcLocalDateTime *ldt);

bool atc_local_date_time_is_error(const AtcLocalDateTime *ldt);

atc_time_t atc_local_date_time_to_epoch_seconds( const AtcLocalDateTime *ldt);

void atc_local_date_time_from_epoch_seconds(
    AtcLocalDateTime *ldt,
    atc_time_t epoch_seconds);

int64_t atc_local_date_time_to_unix_seconds( const AtcLocalDateTime *ldt);

void atc_local_date_time_from_unix_seconds(
    AtcLocalDateTime *ldt,
    int64_t unix_seconds);

void atc_local_date_time_print(
    AtcStringBuffer *sb,
    const AtcLocalDateTime *ldt);

The atc_local_date_time_set_error(ldt) marks the given ldt as invalid. This causes atc_local_date_time_is_error(ldt) to return true.

The atc_local_date_time_to_epoch_seconds() function converts the given AtcLocalDateTime into its atc_time_t epoch seconds. If an error occurs, the function returns kAtcInvalidEpochSeconds.

The atc_local_date_time_from_epoch_seconds() function converts the given epoch seconds into the AtcLocalDateTime components. If an error occurs, the ldt is set to its error value.

The fold parameter is both an input parameter and an output parameter, and has the meaning as the fold parameter in the AceTime library, which borrowed the concept from the PEP 495 document in Python 3.6.

The fold as an output parameter is used to disambiguate a time which occurs twice due to a DST change. For example, in most of North America, the time zone switches from DST to Standard time in the fall. The wall clock "falls back" from 02:00 to 01:00, which means that the time from 01:00 to 02:00 occurs twice. The fold parameter is returned as 0 for the first occurrence, and 1 for the second occurrence.

The fold as an input parameter is used to specify the UTC offset to be used when converting a LocalDateTime to an epoch_seconds around a DST gap, for example, when the clock jumps from 2:00 to 03:00 in North America. If fold=0, the given LocalDateTime is interpreted using the UTC offset before the gap, which then normalizes to a ZonedDateTime after the gap. If fold=1, the given LocalDateTime is interpreted using the UTC offset after the gap, which then normalizes to a ZonedDateTime before the gap.

AtcOffsetDateTime

The functions in offset_date_time.h operate on the AtcOffsetDateTime type which represents a date-time with a fixed offset from UTC:

typedef struct AtcOffsetDateTime {
  int16_t year;
  uint8_t month;
  uint8_t day;

  uint8_t hour;
  uint8_t minute;
  uint8_t second;
  uint8_t fold;

  int32_t offset_seconds;
} AtcOffsetDateTime;

The memory layout of AtcOffsetDateTime was designed to be identical to AtcLocalDateTime so that functions that accept a pointer to AtcLocalDateTime can be given a pointer to AtcOffsetDateTime as well.

Here are the functions that operate on the AtcOffsetDateTime object:

void atc_offset_date_time_set_error(AtcOffsetDateTime *odt);

bool atc_offset_date_time_is_error(const AtcOffsetDateTime *odt);

atc_time_t atc_offset_date_time_to_epoch_seconds(const AtcOffsetDateTime *odt);

void atc_offset_date_time_from_epoch_seconds(
    AtcOffsetDateTime *odt,
    atc_time_t epoch_seconds,
    int32_t offset_seconds);

int64_t atc_offset_date_time_to_unix_seconds(const AtcOffsetDateTime *odt);

void atc_offset_date_time_from_unix_seconds(
    AtcOffsetDateTime *odt,
    int64_t unix_seconds,
    int32_t offset_seconds);

void atc_offset_date_time_print(
    AtcStringBuffer *sb,
    const AtcOffsetDateTime *odt);

The atc_offset_date_time_set_error(odt) marks the given odt as invalid . This causes atc_offset_date_time_is_error(odt) to return true.

The atc_offset_date_time_from_epoch_seconds() function converts the given AtcOffsetDateTime into its atc_time_t epoch seconds, taking into account the offset_seconds field. If an error occurs, the function returns kAtcInvalidEpochSeconds. The fold parameter of the input AtcOffsetDateTime is ignored because the odt.offset_seconds field is sufficient to disambiguate multiple instances.

The atc_offset_date_time_from_epoch_seconds() function converts the given epoch_seconds and offset_seconds into the AtcOffsetDateTime components. If an error occurs, the function returns kAtcErrGeneric, otherwise it returns kAtcErrOk. The odt.fold parameter will always be set to 0.

AtcZonedDateTime

The functions in zoned_date_time.h operate on the AtcZonedDateTime data structure, which is identical to the AtcOffsetDateTime data structure with the addition of a reference to the TZDB time zone:

typedef struct AtcZonedDateTime {
  int16_t year;
  uint8_t month;
  uint8_t day;

  uint8_t hour;
  uint8_t minute;
  uint8_t second;
  uint8_t fold;

  int32_t offset_seconds; /* possibly ignored */
  AtcTimeZone tz;
} AtcZonedDateTime;

The memory layout of AtcZonedDateTime was designed to be identical to AtcOffsetDateTime, so that functions that accept a pointer to AtcOffsetDateTime can also accept pointers to AtcZonedDateTime.

The following functions operate on the AtcZonedDateTime struct:

void atc_zoned_date_time_set_error(AtcZonedDateTime *zdt);

bool atc_zoned_date_time_is_error(const AtcZonedDateTime *zdt);

atc_time_t atc_zoned_date_time_to_epoch_seconds(const AtcZonedDateTime *zdt);

void atc_zoned_date_time_from_epoch_seconds(
    AtcZonedDateTime *zdt,
    atc_time_t epoch_seconds,
    AtcTimeZone *tz);

int64_t atc_zoned_date_time_to_unix_seconds(const AtcZonedDateTime *zdt);

void atc_zoned_date_time_from_unix_seconds(
    AtcZonedDateTime *zdt,
    int64_t unix_seconds,
    AtcTimeZone *tz);

void atc_zoned_date_time_from_local_date_time(
    AtcZonedDateTime *zdt,
    const AtcLocalDateTime *ldt,
    AtcTimeZone *tz);

void atc_zoned_date_time_convert(
    const AtcZonedDateTime *from,
    AtcTimeZone to_tz,
    AtcZonedDateTime *to);

void atc_zoned_date_time_normalize(
    AtcZonedDateTime *zdt);

void atc_zoned_date_time_print(
    AtcStringBuffer *sb,
    const AtcZonedDateTime *zdt);
  • atc_offset_date_time_set_error(zdt)
    • marks the given zdt as invalid
    • causes atc_offset_date_time_is_error(zdt) to return true
  • atc_offset_date_time_from_epoch_seconds()
    • Converts the given epoch_seconds and tz into the AtcZonedDateTime components.
    • If an error occurs, the function returns kAtcErrGeneric, otherwise it returns kAtcErrOk.
    • AtcZonedDateTime.fold is an output parameter in this function:
      • Will usually be 0 except during a DST overlap.
      • fold=0 indicates the first occurrence of the local wall clock
      • fold=1 indicates the second occurrence of the local wall clock.
  • atc_zoned_date_time_to_epoch_seconds()
    • Converts the given AtcZonedDateTime into its atc_time_t epoch seconds, taking into account the time zone defined by the tz field inside the AtcZonedDatetime.
    • If an error occurs, the function returns kAtcInvalidEpochSeconds.
  • atc_zoned_date_time_from_local_date_time()
    • Converts the local wall clock defined by AtcLocalDateTime to the AtcZonedDateTime, taking into account the time zone defined by tz.
    • AtcLocalDateTime.fold is an input parameter for this function.
      • In most cases, the fold parameter has no effect.
      • During an overlap:
        • fold=0 indicates the earlier of the 2 repeated time,
        • fold=1 indicates the later of the 2 repeated time.
      • During a gap:
        • fold=0 indicates that the earlier UTC offset should be used, which causes the effective epoch seconds to be the later one, which then gets normalized to the later AtcZonedDateTime.
        • fold=1 indicates that the later UTC offset should be used, which causes the effective epoch seconds to be the earlier one, which then gets normalized to the earlier AtcZonedDateTime.
  • atc_zoned_date_time_convert()
    • Converts an AtcZonedDateTime instance from one time zone to another. The src instance contains the original time zone. The dst instance will contain the date-time of the time zone represented by dst_zone_info.

The conventions for the fold parameter are intended to be identical to the one described by the Python PEP 495 document.

AtcTimeZone

The AtcTimeZone structure represents a time zone from the IANA TZ database. It consists of a pair of pointers, an AtcZoneInfo* pointer and an AtcZoneProcessor* pointer, like this:

typedef struct AtcTimeZone {
  const AtcZoneInfo *zone_info;
  AtcZoneProcessor *zone_processor;
} AtcTimeZone;

Instances of AtcTimeZone are expected to be passed around by value into functions which need to be provided a time zone.

AtcZoneProcessor

The AtcZoneProcessor data structure provides a workspace for the various internal functions that perform time zone calculations. The internal details should be considered to be private and subject to change without notice. One of this data type should be created statically for each time zone used by the downstream application. (Another possibility is to create one on the heap at startup time, then never freed.)

Each time zone should be assigned an instance of the AtcZoneProcessor. An instance of AtcZoneProcessor should be initialized only once, usually at the beginning of the application:

AtcZoneProcessor los_angeles_processor;

void setup()
{
  atc_processor_init(&los_angeles_processor);
}

The AtcZoneProcessor instance keeps a cache of UTC offset transitions spanning a year. Multiple calls to various atc_zoned_date_time_XXX() functions with the same AtcZoneProcessor instance within a given year will execute much faster than other years.

If memory is tight, an AtcZoneProcessor instance could be used by multiple time zones (i.e. different AtcZoneInfo). However, each time the time zone changes, the internal cache of the AtcZoneProcessor instance will be cleared and recalculated, so the execution speed may decrease significantly.

Warning: If the epoch year is changed using the atc_set_current_epoch_year() function (see Epoch), then the atc_processor_init() function must be called to reinitialize any instance of AtcZoneProcessor that may have used a different epoch year.

AtcZoneInfo

The AtcZoneInfo data structure in zone_info.h defines the DST transition rules of a single time zone. The pointer to the AtcZoneInfo is meant to be passed around as opaque object for the most part since most of the fields are meant for internal consumption. There are 3 accessor functions which may be useful for end-users:

bool atc_zone_info_is_link(const AtcZoneInfo *info);

const char *atc_zone_info_zone_name(const AtcZoneInfo *info);

const char *atc_zone_info_short_name(const AtcZoneInfo *info);

The atc_zone_info_is_link() function can determine whether a particular info instance is a Zone entry or a Link entry.

The atc_zone_info_zone_name() function returns the full zone name of the info instance. For example, calling this on kAtcZoneAmerica_Los_Angeles returns the string "America/Los_Angeles". This is useful if the info instance was retrieved from the zone registrar using a zone ID instead of the zone string.

The atc_zone_info_short_name() function is similar to the atc_zone_info_zone_name() except that it returns the "short" name of the zone, which is defined to be the string just after the last / character in the zone name. For example, the short name of "America/Los_Angeles" is "Los_Angeles".

Zone Database and Registry

There are 3 zoneinfo databases provided by this library and available through the default <acetimec.h> header file:

  • src/zonedb

    • All TZDB zones, from the year 2000 to 10000.
    • Exported identifiers:
      • kAtcZoneContext
      • kAtcZoneXxx (e.g. kAtcZoneAmerica_Los_Angeles)
      • kAtcZoneIdXxx (e.g. kAtcZoneIdAmerica_Los_Angeles)
  • src/zonedball

    • All TZDB zones, from the year 1800 to 10000.
    • The earliest entry in the TZDB is 1844, so this database covers all entries for all time periods.
    • Exported identifiers:
      • kAtcAllZoneContext
      • kAtcAllZoneXxx (e.g. kAtcAllZoneAmerica_Los_Angeles)
      • kAtcAllZoneIdXxx (e.g. kAtcAllZoneIdAmerica_Los_Angeles)
  • src/zonedbtesting

    • A limited (10-20) number of zones, from the year 2000 to 10000.
    • Used by unit tests for stability.
    • Exported identifiers:
      • kAtcTestingZoneContext
      • kAtcTestingZoneXxx (e.g. kAtcTestingZoneAmerica_Los_Angeles)
      • kAtcTestingZoneIdXxx (e.g. kAtcTestingZoneIdAmerica_Los_Angeles)

These files are programmatically generated by scripts in the AceTimeTools project.

The full list of Zones (and Links) supported by this library is given in the respective zone_infos.h file, which is automatically included by the <acetimec.h> header file.

The IANA TZ database is often updated to track changes to the DST rules in different countries and regions. The version of the TZ database that was used to generate the acetimec Zone database is given by:

extern const char kAtcTzDatabaseVersion[];
extern const char kAtcAllTzDatabaseVersion[];
extern const char kAtcTestingTzDatabaseVersion[];

For example, these will all be "2023c" for the 2023c version of the TZ database.

The Zone Registry is defined in the respective zone_registry.h file which contains the list of all Zones (and Links) supported by this library. It allows us to locate the AtcZoneInfo pointer using the human readable zone name (e.g. "America/Los_Angeles") or its 32-bit zone identifier (e.g. 0xb7f7e8f2).

Each zonedb provides 2 zone registries:

#define kAtcZoneRegistrySize 356
extern const AtcZoneInfo * const kAtcZoneRegistry[356];
#define kAtcZoneAndLinkRegistrySize 595
extern const AtcZoneInfo * const kAtcZoneAndLinkRegistry[595];

#define kAtcAllZoneRegistrySize 356
extern const AtcZoneInfo * const kAtcAllZoneRegistry[356];
#define kAtcAllZoneAndLinkRegistrySize 595
extern const AtcZoneInfo * const kAtcAllZoneAndLinkRegistry[595];

#define kAtcTestingZoneRegistrySize 16
extern const AtcZoneInfo * const kAtcTestingZoneRegistry[16]
#define kAtcTestingZoneAndLinkRegistrySize 17
extern const AtcZoneInfo * const kAtcTestingZoneAndLinkRegistry[17];

The kAtc*ZoneRegistry and kAtc*ZoneAndLinkRegistry are used by the Zone Registrar functions described below.

AtcZonedExtra

The AtcZonedExtra structure in zoned_extra.h holds additional meta information about a particular time zone, usually at a particular epoch seconds:

enum {
  kAtcFoldTypeNotFound = 0,
  kAtcFoldTypeExact = 1,
  kAtcFoldTypeGap = 2,
  kAtcFoldTypeOverlap = 3,
};

typedef struct AtcZonedExtra {
  int8_t fold_type;
  int32_t std_offset_seconds; // STD offset
  int32_t dst_offset_seconds; // DST offset
  int32_t req_std_offset_seconds; // request STD offset
  int32_t req_dst_offset_seconds; // request DST offset
  char abbrev[kAtcAbbrevSize];
} AtcZonedExtra;

For type of kAtcFoldTypeExact and kAtcFoldTypeOverlap, the req_std_offset_seconds and req_dst_offset_seconds will be identical to the corresponding std_offset_seconds and dst_offset_seconds parameters.

For type kAtcFoldTypeGap, which can be returned only by the atc_zoned_extra_from_local_date_time() function below, the fold parameter selects one of the 2 matching AtcZonedDateTime following the algorithms described by Python PEP 495. Since the AtcLocalDateTime instants before and after normalization are different, we need 2 different sets of offset seconds:

  • req_std_offset_seconds and req_dst_offset_seconds fields correspond to the AtcLocalDateTime before normalization, and
  • std_offset_seconds and dst_offset_seconds fields correspond to the AtcLocalDateTime after normalization.

There following functions operate on this data structure (analogous to the functions that work with the AtcZonedDateTime data structure):

void atc_zoned_extra_set_error(AtcZonedExtra *extra);

bool atc_zoned_extra_is_error(const AtcZonedExtra *extra);

void atc_zoned_extra_from_epoch_seconds(
    AtcZonedExtra *extra,
    atc_time_t epoch_seconds,
    AtcTimeZone tz);

void atc_zoned_extra_from_unix_seconds(
    AtcZonedExtra *extra,
    int64_t unix_seconds,
    AtcTimeZone tz);

void atc_zoned_extra_from_local_date_time(
    AtcZonedExtra *extra,
    AtcLocalDateTime *ldt,
    AtcTimeZone tz);

On error, the extra.type field is set to kAtcFoldTypeNotFound and atc_zoned_extra_is_error() returns true.

AtcZoneRegistrar

The functions in zone_registrar.h allow searching of the zone registries by human readable name (e.g. "America/Los_Angeles") or by a 32-bit numerical zoneId.

The zone identifier is a unique and stable 32-bit integer associated with each time zone. It was defined in the AceTime library. See the section CreateForZoneId in the USER_GUIDE.md for the AceTime library. A 32-bit integer is often more convenient in an embedded environment than the human-readable zone name because the integer is a fixed size and can be stored and retrieved quickly. Examples are shown below.

To use these registries, first we create and initialize an AtcZoneRegistrar data structure using the atc_registrar_init() function:

typedef struct AtcZoneRegistrar {
  const AtcZoneInfo * const * registry;
  uint16_t size;
  bool is_sorted;
} AtcZoneRegistrar;

void atc_registrar_init(
    AtcZoneRegistrar *registrar,
    const AtcZoneInfo * const * registry,
    uint16_t size);

Then we can query the registry using either the zoneId or its zone name:

const AtcZoneInfo *atc_registrar_find_by_name(
    const AtcZoneRegistrar *registrar,
    const char *name);

const AtcZoneInfo *atc_registrar_find_by_id(
    const AtcZoneRegistrar *registrar,
    uint32_t zone_id);

Here is a sample code to retrieve the AtcZoneInfo pointer from the human readable zone name (e.g. "America/Los_Angeles"):

#include <acetimec.h>

AtcZoneRegistrar registrar;

// Perform this only once
void setup()
{
  atc_registrar_init(
      &registrar,
      kAtcZoneAndLinkRegistry,
      kAtcZoneAndLinkRegistrySize);
  ...
}

void retrieve_zone_info_by_name()
{
  const char *name = "America/Los_Angeles";
  const AtcZoneInfo *zone_info = atc_registrar_find_by_name(&registrar, name);
  if (zone_info == NULL) { /*error*/ }
  ...
}

Instead of using the string "America/Los_Angeles", we can search for this timezone by its 32-bit zoneId which is provided by the Zone Database as kAtcZoneIdAmerica_Los_Angeles=0xb7f7e8f2:

#include <acetimec.h>

AtcZoneRegistrar registrar;

// Perform setup() as above

void retrieve_zone_info_by_id()
{
  uint32_t zone_id = kAtcZoneIdAmerica_Los_Angeles;
  const AtcZoneInfo *zone_info = atc_registrar_find_by_id(&registrar, zone_id);
  if (zone_info == NULL) { /*error*/ }
  ...
}

The atc_registrar_init() function performs an optimization. It evaluates whether or not the registry is sorted by zone id. If it is, then the search functions (both find_by_name() and find_by_id()) will use binary search algorithm. If the registry is not sorted, then the search functions performs a linear search through the registry. The binary search algorithm is O(log(N)) and the linear search of O(N). The binary search will be far faster than the linear search if the registry contains more than about 5-10 entries.

The downstream application does not need to use the default zone registries (kAtcZoneRegistry or kAtcZoneAndLinkRegistry). It can create its own custom zone registry, and pass this custom registry into the atc_registrar_find_by_name() or atc_registrar_find_by_id() functions.

Bugs And Limitations

  • No support for constants in flash memory
    • Some microcontrollers (e.g. AVR, ESP8266) use a modified-Harvard memory architecture where the program and data are in 2 different address spaces.
    • To place large data constants (e.g. arrays) into program flash memory instead of static memory, special (non-standard) compiler directives need to be used.
    • On avr-gcc compiler, this is PROGMEM directive.
    • acetimec library does not use the PROGMEM directive, so the library will probably will not fit inside an AVR processor.
    • On other microcontrollers (e.g. ARM), constants are automatically placed into flash memory and referenced directly from there. No special compiler directives are required.
  • The atc_time_t type is a 32-bit signed integer.
    • This has a range of approximately +/- 68 years around the (adjustable) current epoch year.
    • A 64-bit type would solve the range problem, but would consume more flash and ram resources. This option may be implemented in the future.

License

MIT License

Feedback and Support

If you have any questions, comments, or feature requests for this library, please use the GitHub Discussions for this project. If you have bug reports, please file a ticket in GitHub Issues. Feature requests should go into Discussions first because they often have alternative solutions which are useful to remain visible, instead of disappearing from the default view of the Issue tracker after the ticket is closed.

Please refrain from emailing me directly unless the content is sensitive. The problem with email is that I cannot reference the email conversation when other people ask similar questions later.

Authors