diff --git a/docs/tutorial/layers.md b/docs/tutorial/layers.md index 7362aac2..a903d5ac 100644 --- a/docs/tutorial/layers.md +++ b/docs/tutorial/layers.md @@ -1,186 +1,77 @@ --- title: Layer Catalogue --- + # Layers To create a Caffe model you need to define the model architecture in a protocol buffer definition file (prototxt). Caffe layers and their parameters are defined in the protocol buffer definitions for the project in [caffe.proto](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto). -### Vision Layers - -* Header: `./include/caffe/vision_layers.hpp` - -Vision layers usually take *images* as input and produce other *images* as output. -A typical "image" in the real-world may have one color channel ($$c = 1$$), as in a grayscale image, or three color channels ($$c = 3$$) as in an RGB (red, green, blue) image. -But in this context, the distinguishing characteristic of an image is its spatial structure: usually an image has some non-trivial height $$h > 1$$ and width $$w > 1$$. -This 2D geometry naturally lends itself to certain decisions about how to process the input. -In particular, most of the vision layers work by applying a particular operation to some region of the input to produce a corresponding region of the output. -In contrast, other layers (with few exceptions) ignore the spatial structure of the input, effectively treating it as "one big vector" with dimension $$chw$$. - - -#### Convolution - -* Layer type: `Convolution` -* CPU implementation: `./src/caffe/layers/convolution_layer.cpp` -* CUDA GPU implementation: `./src/caffe/layers/convolution_layer.cu` -* Parameters (`ConvolutionParameter convolution_param`) - - Required - - `num_output` (`c_o`): the number of filters - - `kernel_size` (or `kernel_h` and `kernel_w`): specifies height and width of each filter - - Strongly Recommended - - `weight_filler` [default `type: 'constant' value: 0`] - - Optional - - `bias_term` [default `true`]: specifies whether to learn and apply a set of additive biases to the filter outputs - - `pad` (or `pad_h` and `pad_w`) [default 0]: specifies the number of pixels to (implicitly) add to each side of the input - - `stride` (or `stride_h` and `stride_w`) [default 1]: specifies the intervals at which to apply the filters to the input - - `group` (g) [default 1]: If g > 1, we restrict the connectivity of each filter to a subset of the input. Specifically, the input and output channels are separated into g groups, and the $$i$$th output group channels will be only connected to the $$i$$th input group channels. -* Input - - `n * c_i * h_i * w_i` -* Output - - `n * c_o * h_o * w_o`, where `h_o = (h_i + 2 * pad_h - kernel_h) / stride_h + 1` and `w_o` likewise. -* Sample (as seen in `./models/bvlc_reference_caffenet/train_val.prototxt`) - - layer { - name: "conv1" - type: "Convolution" - bottom: "data" - top: "conv1" - # learning rate and decay multipliers for the filters - param { lr_mult: 1 decay_mult: 1 } - # learning rate and decay multipliers for the biases - param { lr_mult: 2 decay_mult: 0 } - convolution_param { - num_output: 96 # learn 96 filters - kernel_size: 11 # each filter is 11x11 - stride: 4 # step 4 pixels between each filter application - weight_filler { - type: "gaussian" # initialize the filters from a Gaussian - std: 0.01 # distribution with stdev 0.01 (default mean: 0) - } - bias_filler { - type: "constant" # initialize the biases to zero (0) - value: 0 - } - } - } - -The `Convolution` layer convolves the input image with a set of learnable filters, each producing one feature map in the output image. - -#### Pooling - -* Layer type: `Pooling` -* CPU implementation: `./src/caffe/layers/pooling_layer.cpp` -* CUDA GPU implementation: `./src/caffe/layers/pooling_layer.cu` -* Parameters (`PoolingParameter pooling_param`) - - Required - - `kernel_size` (or `kernel_h` and `kernel_w`): specifies height and width of each filter - - Optional - - `pool` [default MAX]: the pooling method. Currently MAX, AVE, or STOCHASTIC - - `pad` (or `pad_h` and `pad_w`) [default 0]: specifies the number of pixels to (implicitly) add to each side of the input - - `stride` (or `stride_h` and `stride_w`) [default 1]: specifies the intervals at which to apply the filters to the input -* Input - - `n * c * h_i * w_i` -* Output - - `n * c * h_o * w_o`, where h_o and w_o are computed in the same way as convolution. -* Sample (as seen in `./models/bvlc_reference_caffenet/train_val.prototxt`) - - layer { - name: "pool1" - type: "Pooling" - bottom: "conv1" - top: "pool1" - pooling_param { - pool: MAX - kernel_size: 3 # pool over a 3x3 region - stride: 2 # step two pixels (in the bottom blob) between pooling regions - } - } - -#### Local Response Normalization (LRN) - -* Layer type: `LRN` -* CPU Implementation: `./src/caffe/layers/lrn_layer.cpp` -* CUDA GPU Implementation: `./src/caffe/layers/lrn_layer.cu` -* Parameters (`LRNParameter lrn_param`) - - Optional - - `local_size` [default 5]: the number of channels to sum over (for cross channel LRN) or the side length of the square region to sum over (for within channel LRN) - - `alpha` [default 1]: the scaling parameter (see below) - - `beta` [default 5]: the exponent (see below) - - `norm_region` [default `ACROSS_CHANNELS`]: whether to sum over adjacent channels (`ACROSS_CHANNELS`) or nearby spatial locaitons (`WITHIN_CHANNEL`) +## Data Layers -The local response normalization layer performs a kind of "lateral inhibition" by normalizing over local input regions. In `ACROSS_CHANNELS` mode, the local regions extend across nearby channels, but have no spatial extent (i.e., they have shape `local_size x 1 x 1`). In `WITHIN_CHANNEL` mode, the local regions extend spatially, but are in separate channels (i.e., they have shape `1 x local_size x local_size`). Each input value is divided by $$(1 + (\alpha/n) \sum_i x_i^2)^\beta$$, where $$n$$ is the size of each local region, and the sum is taken over the region centered at that value (zero padding is added where necessary). - -#### im2col - -`Im2col` is a helper for doing the image-to-column transformation that you most likely do not need to know about. This is used in Caffe's original convolution to do matrix multiplication by laying out all patches into a matrix. - -### Loss Layers +Data enters Caffe through data layers: they lie at the bottom of nets. Data can come from efficient databases (LevelDB or LMDB), directly from memory, or, when efficiency is not critical, from files on disk in HDF5 or common image formats. -Loss drives learning by comparing an output to a target and assigning cost to minimize. The loss itself is computed by the forward pass and the gradient w.r.t. to the loss is computed by the backward pass. +Common input preprocessing (mean subtraction, scaling, random cropping, and mirroring) is available by specifying `TransformationParameter`s by some of the layers. +The [bias](layers/bias.html), [scale](layers/scale.html), and [crop](layers/crop.html) layers can be helpful with transforming the inputs, when `TransformationParameter` isn't available. -#### Softmax +Layers: -* Layer type: `SoftmaxWithLoss` +* [Image Data](layers/imagedata.html) - read raw images. +* [Database](layers/data.html) - read data from LEVELDB or LMDB. +* [HDF5 Input](layers/hdf5data.html) - read HDF5 data, allows data of arbitrary dimensions. +* [HDF5 Output](layers/hdf5output.html) - write data as HDF5. +* [Input](layers/input.html) - typically used for networks that are being deployed. +* [Window Data](layers/windowdata.html) - read window data file. +* [Memory Data](layers/memorydata.html) - read data directly from memory. +* [Dummy Data](layers/dummydata.html) - for static data and debugging. -The softmax loss layer computes the multinomial logistic loss of the softmax of its inputs. It's conceptually identical to a softmax layer followed by a multinomial logistic loss layer, but provides a more numerically stable gradient. +Note that the [Python](layers/python.html) Layer can be useful for create custom data layers. -#### Sum-of-Squares / Euclidean +## Vision Layers -* Layer type: `EuclideanLoss` +Vision layers usually take *images* as input and produce other *images* as output, although they can take data of other types and dimensions. +A typical "image" in the real-world may have one color channel ($$c = 1$$), as in a grayscale image, or three color channels ($$c = 3$$) as in an RGB (red, green, blue) image. +But in this context, the distinguishing characteristic of an image is its spatial structure: usually an image has some non-trivial height $$h > 1$$ and width $$w > 1$$. +This 2D geometry naturally lends itself to certain decisions about how to process the input. +In particular, most of the vision layers work by applying a particular operation to some region of the input to produce a corresponding region of the output. +In contrast, other layers (with few exceptions) ignore the spatial structure of the input, effectively treating it as "one big vector" with dimension $$chw$$. -The Euclidean loss layer computes the sum of squares of differences of its two inputs, $$\frac 1 {2N} \sum_{i=1}^N \| x^1_i - x^2_i \|_2^2$$. +Layers: -#### Hinge / Margin +* [Convolution Layer](layers/convolution.html) - convolves the input image with a set of learnable filters, each producing one feature map in the output image. +* [Pooling Layer](layers/pooling.html) - max, average, or stochastic pooling. +* [Spatial Pyramid Pooling (SPP)](layers/spp.html) +* [Crop](layers/crop.html) - perform cropping transformation. +* [Deconvolution Layer](layers/deconvolution.html) - transposed convolution. -* Layer type: `HingeLoss` -* CPU implementation: `./src/caffe/layers/hinge_loss_layer.cpp` -* CUDA GPU implementation: none yet -* Parameters (`HingeLossParameter hinge_loss_param`) - - Optional - - `norm` [default L1]: the norm used. Currently L1, L2 -* Inputs - - `n * c * h * w` Predictions - - `n * 1 * 1 * 1` Labels -* Output - - `1 * 1 * 1 * 1` Computed Loss -* Samples +* [Im2Col](layers/im2col.html) - relic helper layer that is not used much anymore. - # L1 Norm - layer { - name: "loss" - type: "HingeLoss" - bottom: "pred" - bottom: "label" - } +## Recurrent Layers - # L2 Norm - layer { - name: "loss" - type: "HingeLoss" - bottom: "pred" - bottom: "label" - top: "loss" - hinge_loss_param { - norm: L2 - } - } +Layers: -The hinge loss layer computes a one-vs-all hinge or squared hinge loss. +* [Recurrent](layers/recurrent.html) +* [RNN](layers/rnn.html) +* [Long-Short Term Memory (LSTM)](layers/lstm.html) -#### Sigmoid Cross-Entropy +## Common Layers -`SigmoidCrossEntropyLoss` +Layers: -#### Infogain +* [Inner Product](layers/innerproduct.html) - fully connected layer. +* [Dropout](layers/dropout.html) +* [Embed](layers/embed.html) - for learning embeddings of one-hot encoded vector (takes index as input). -`InfogainLoss` +## Normalization Layers -#### Accuracy and Top-k +* [Local Response Normalization (LRN)](layers/lrn.html) - performs a kind of "lateral inhibition" by normalizing over local input regions. +* [Mean Variance Normalization (MVN)](layers/mvn.html) - performs contrast normalization / instance normalization. +* [Batch Normalization](layers/batchnorm.html) - performs normalization over mini-batches. -`Accuracy` scores the output as the accuracy of output with respect to target -- it is not actually a loss and has no backward step. +The [bias](layers/bias.html) and [scale](layers/scale.html) layers can be helpful in combination with normalization. -### Activation / Neuron Layers +## Activation / Neuron Layers In general, activation / Neuron layers are element-wise operators, taking one bottom blob and producing one top blob of the same size. In the layers below, we will ignore the input and out sizes as they are identical: @@ -189,337 +80,56 @@ In general, activation / Neuron layers are element-wise operators, taking one bo * Output - n * c * h * w -#### ReLU / Rectified-Linear and Leaky-ReLU - -* Layer type: `ReLU` -* CPU implementation: `./src/caffe/layers/relu_layer.cpp` -* CUDA GPU implementation: `./src/caffe/layers/relu_layer.cu` -* Parameters (`ReLUParameter relu_param`) - - Optional - - `negative_slope` [default 0]: specifies whether to leak the negative part by multiplying it with the slope value rather than setting it to 0. -* Sample (as seen in `./models/bvlc_reference_caffenet/train_val.prototxt`) - - layer { - name: "relu1" - type: "ReLU" - bottom: "conv1" - top: "conv1" - } - -Given an input value x, The `ReLU` layer computes the output as x if x > 0 and negative_slope * x if x <= 0. When the negative slope parameter is not set, it is equivalent to the standard ReLU function of taking max(x, 0). It also supports in-place computation, meaning that the bottom and the top blob could be the same to preserve memory consumption. - -#### Sigmoid - -* Layer type: `Sigmoid` -* CPU implementation: `./src/caffe/layers/sigmoid_layer.cpp` -* CUDA GPU implementation: `./src/caffe/layers/sigmoid_layer.cu` -* Sample (as seen in `./examples/mnist/mnist_autoencoder.prototxt`) - - layer { - name: "encode1neuron" - bottom: "encode1" - top: "encode1neuron" - type: "Sigmoid" - } - -The `Sigmoid` layer computes the output as sigmoid(x) for each input element x. - -#### TanH / Hyperbolic Tangent - -* Layer type: `TanH` -* CPU implementation: `./src/caffe/layers/tanh_layer.cpp` -* CUDA GPU implementation: `./src/caffe/layers/tanh_layer.cu` -* Sample - - layer { - name: "layer" - bottom: "in" - top: "out" - type: "TanH" - } - -The `TanH` layer computes the output as tanh(x) for each input element x. - -#### Absolute Value - -* Layer type: `AbsVal` -* CPU implementation: `./src/caffe/layers/absval_layer.cpp` -* CUDA GPU implementation: `./src/caffe/layers/absval_layer.cu` -* Sample - - layer { - name: "layer" - bottom: "in" - top: "out" - type: "AbsVal" - } - -The `AbsVal` layer computes the output as abs(x) for each input element x. - -#### Power - -* Layer type: `Power` -* CPU implementation: `./src/caffe/layers/power_layer.cpp` -* CUDA GPU implementation: `./src/caffe/layers/power_layer.cu` -* Parameters (`PowerParameter power_param`) - - Optional - - `power` [default 1] - - `scale` [default 1] - - `shift` [default 0] -* Sample - - layer { - name: "layer" - bottom: "in" - top: "out" - type: "Power" - power_param { - power: 1 - scale: 1 - shift: 0 - } - } - -The `Power` layer computes the output as (shift + scale * x) ^ power for each input element x. - -#### BNLL - -* Layer type: `BNLL` -* CPU implementation: `./src/caffe/layers/bnll_layer.cpp` -* CUDA GPU implementation: `./src/caffe/layers/bnll_layer.cu` -* Sample - - layer { - name: "layer" - bottom: "in" - top: "out" - type: BNLL - } - -The `BNLL` (binomial normal log likelihood) layer computes the output as log(1 + exp(x)) for each input element x. - - -### Data Layers - -Data enters Caffe through data layers: they lie at the bottom of nets. Data can come from efficient databases (LevelDB or LMDB), directly from memory, or, when efficiency is not critical, from files on disk in HDF5 or common image formats. - -Common input preprocessing (mean subtraction, scaling, random cropping, and mirroring) is available by specifying `TransformationParameter`s. - -#### Database +Layers: -* Layer type: `Data` -* Parameters - - Required - - `source`: the name of the directory containing the database - - `batch_size`: the number of inputs to process at one time - - Optional - - `rand_skip`: skip up to this number of inputs at the beginning; useful for asynchronous sgd - - `backend` [default `LEVELDB`]: choose whether to use a `LEVELDB` or `LMDB` +* [ReLU / Rectified-Linear and Leaky-ReLU](layers/relu.html) - ReLU and Leaky-ReLU rectification. +* [PReLU](layers/prelu.html) - parametric ReLU. +* [ELU](layers/elu.html) - exponential linear rectification. +* [Sigmoid](layers/sigmoid.html) +* [TanH](layers/tanh.html) +* [Absolute Value](layers/abs.html) +* [Power](layers/power.html) - f(x) = (shift + scale * x) ^ power. +* [Exp](layers/exp.html) - f(x) = base ^ (shift + scale * x). +* [Log](layers/log.html) - f(x) = log(x). +* [BNLL](layers/bnll.html) - f(x) = log(1 + exp(x)). +* [Threshold](layers/threshold.html) - performs step function at user defined threshold. +* [Bias](layers/bias.html) - adds a bias to a blob that can either be learned or fixed. +* [Scale](layers/scale.html) - scales a blob by an amount that can either be learned or fixed. +## Utility Layers +Layers: -#### In-Memory +* [Flatten](layers/flatten.html) +* [Reshape](layers/reshape.html) +* [Batch Reindex](layers/batchreindex.html) -* Layer type: `MemoryData` -* Parameters - - Required - - `batch_size`, `channels`, `height`, `width`: specify the size of input chunks to read from memory +* [Split](layers/split.html) +* [Concat](layers/concat.html) +* [Slicing](layers/slice.html) +* [Eltwise](layers/eltwise.html) - element-wise operations such as product or sum between two blobs. +* [Filter / Mask](layers/filter.html) - mask or select output using last blob. +* [Parameter](layers/parameter.html) - enable parameters to be shared between layers. +* [Reduction](layers/reduction.html) - reduce input blob to scalar blob using operations such as sum or mean. +* [Silence](layers/silence.html) - prevent top-level blobs from being printed during training. -The memory data layer reads data directly from memory, without copying it. In order to use it, one must call `MemoryDataLayer::Reset` (from C++) or `Net.set_input_arrays` (from Python) in order to specify a source of contiguous data (as 4D row major array), which is read one batch-sized chunk at a time. +* [ArgMax](layers/argmax.html) +* [Softmax](layers/softmax.html) -#### HDF5 Input +* [Python](layers/python.html) - allows custom Python layers. -* Layer type: `HDF5Data` -* Parameters - - Required - - `source`: the name of the file to read from - - `batch_size` +## Loss Layers -#### HDF5 Output - -* Layer type: `HDF5Output` -* Parameters - - Required - - `file_name`: name of file to write to - -The HDF5 output layer performs the opposite function of the other layers in this section: it writes its input blobs to disk. - -#### Images - -* Layer type: `ImageData` -* Parameters - - Required - - `source`: name of a text file, with each line giving an image filename and label - - `batch_size`: number of images to batch together - - Optional - - `rand_skip` - - `shuffle` [default false] - - `new_height`, `new_width`: if provided, resize all images to this size - -#### Windows - -`WindowData` - -#### Dummy - -`DummyData` is for development and debugging. See `DummyDataParameter`. - -### Common Layers - -#### Inner Product - -* Layer type: `InnerProduct` -* CPU implementation: `./src/caffe/layers/inner_product_layer.cpp` -* CUDA GPU implementation: `./src/caffe/layers/inner_product_layer.cu` -* Parameters (`InnerProductParameter inner_product_param`) - - Required - - `num_output` (`c_o`): the number of filters - - Strongly recommended - - `weight_filler` [default `type: 'constant' value: 0`] - - Optional - - `bias_filler` [default `type: 'constant' value: 0`] - - `bias_term` [default `true`]: specifies whether to learn and apply a set of additive biases to the filter outputs -* Input - - `n * c_i * h_i * w_i` -* Output - - `n * c_o * 1 * 1` -* Sample - - layer { - name: "fc8" - type: "InnerProduct" - # learning rate and decay multipliers for the weights - param { lr_mult: 1 decay_mult: 1 } - # learning rate and decay multipliers for the biases - param { lr_mult: 2 decay_mult: 0 } - inner_product_param { - num_output: 1000 - weight_filler { - type: "gaussian" - std: 0.01 - } - bias_filler { - type: "constant" - value: 0 - } - } - bottom: "fc7" - top: "fc8" - } - -The `InnerProduct` layer (also usually referred to as the fully connected layer) treats the input as a simple vector and produces an output in the form of a single vector (with the blob's height and width set to 1). - -#### Splitting - -The `Split` layer is a utility layer that splits an input blob to multiple output blobs. This is used when a blob is fed into multiple output layers. - -#### Flattening - -The `Flatten` layer is a utility layer that flattens an input of shape `n * c * h * w` to a simple vector output of shape `n * (c*h*w)` - -#### Reshape - -* Layer type: `Reshape` -* Implementation: `./src/caffe/layers/reshape_layer.cpp` -* Parameters (`ReshapeParameter reshape_param`) - - Optional: (also see detailed description below) - - `shape` - -* Input - - a single blob with arbitrary dimensions -* Output - - the same blob, with modified dimensions, as specified by `reshape_param` - -* Sample - - layer { - name: "reshape" - type: "Reshape" - bottom: "input" - top: "output" - reshape_param { - shape { - dim: 0 # copy the dimension from below - dim: 2 - dim: 3 - dim: -1 # infer it from the other dimensions - } - } - } - -The `Reshape` layer can be used to change the dimensions of its input, without changing its data. Just like the `Flatten` layer, only the dimensions are changed; no data is copied in the process. - -Output dimensions are specified by the `ReshapeParam` proto. Positive numbers are used directly, setting the corresponding dimension of the output blob. In addition, two special values are accepted for any of the target dimension values: - -* **0** means "copy the respective dimension of the bottom layer". That is, if the bottom has 2 as its 1st dimension, the top will have 2 as its 1st dimension as well, given `dim: 0` as the 1st target dimension. -* **-1** stands for "infer this from the other dimensions". This behavior is similar to that of -1 in *numpy*'s or `[]` for *MATLAB*'s reshape: this dimension is calculated to keep the overall element count the same as in the bottom layer. At most one -1 can be used in a reshape operation. - -As another example, specifying `reshape_param { shape { dim: 0 dim: -1 } }` makes the layer behave in exactly the same way as the `Flatten` layer. - -#### Concatenation - -* Layer type: `Concat` -* CPU implementation: `./src/caffe/layers/concat_layer.cpp` -* CUDA GPU implementation: `./src/caffe/layers/concat_layer.cu` -* Parameters (`ConcatParameter concat_param`) - - Optional - - `axis` [default 1]: 0 for concatenation along num and 1 for channels. -* Input - - `n_i * c_i * h * w` for each input blob i from 1 to K. -* Output - - if `axis = 0`: `(n_1 + n_2 + ... + n_K) * c_1 * h * w`, and all input `c_i` should be the same. - - if `axis = 1`: `n_1 * (c_1 + c_2 + ... + c_K) * h * w`, and all input `n_i` should be the same. -* Sample - - layer { - name: "concat" - bottom: "in1" - bottom: "in2" - top: "out" - type: "Concat" - concat_param { - axis: 1 - } - } - -The `Concat` layer is a utility layer that concatenates its multiple input blobs to one single output blob. - -#### Slicing - -The `Slice` layer is a utility layer that slices an input layer to multiple output layers along a given dimension (currently num or channel only) with given slice indices. - -* Sample - - layer { - name: "slicer_label" - type: "Slice" - bottom: "label" - ## Example of label with a shape N x 3 x 1 x 1 - top: "label1" - top: "label2" - top: "label3" - slice_param { - axis: 1 - slice_point: 1 - slice_point: 2 - } - } - -`axis` indicates the target axis; `slice_point` indicates indexes in the selected dimension (the number of indices must be equal to the number of top blobs minus one). - - -#### Elementwise Operations - -`Eltwise` - -#### Argmax - -`ArgMax` - -#### Softmax +Loss drives learning by comparing an output to a target and assigning cost to minimize. The loss itself is computed by the forward pass and the gradient w.r.t. to the loss is computed by the backward pass. -`Softmax` +Layers: -#### Mean-Variance Normalization +* [Multinomial Logistic Loss](layers/multinomiallogisticloss.html) +* [Infogain Loss](layers/infogainloss.html) - a generalization of MultinomialLogisticLossLayer. +* [Softmax with Loss](layers/softmaxwithloss.html) - computes the multinomial logistic loss of the softmax of its inputs. It's conceptually identical to a softmax layer followed by a multinomial logistic loss layer, but provides a more numerically stable gradient. +* [Sum-of-Squares / Euclidean](layers/euclideanloss.html) - computes the sum of squares of differences of its two inputs, $$\frac 1 {2N} \sum_{i=1}^N \| x^1_i - x^2_i \|_2^2$$. +* [Hinge / Margin](layers/hiddenloss.html) - The hinge loss layer computes a one-vs-all hinge (L1) or squared hinge loss (L2). +* [Sigmoid Cross-Entropy Loss](layers/sigmoidcrossentropyloss.html) - computes the cross-entropy (logistic) loss, often used for predicting targets interpreted as probabilities. +* [Accuracy / Top-k layer](layers/accuracy.html) - scores the output as an accuracy with respect to target -- it is not actually a loss and has no backward step. +* [Contrastive Loss](layers/contrastiveloss.html) -`MVN` diff --git a/docs/tutorial/layers/absval.md b/docs/tutorial/layers/absval.md new file mode 100644 index 00000000..220c4118 --- /dev/null +++ b/docs/tutorial/layers/absval.md @@ -0,0 +1,22 @@ +--- +title: Absolute Value Layer +--- + +# Absolute Value Layer + +* Layer type: `AbsVal` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1AbsValLayer.html) +* Header: [`./include/caffe/layers/absval_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/absval_layer.hpp) +* CPU implementation: [`./src/caffe/layers/absval_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/absval_layer.cpp) +* CUDA GPU implementation: [`./src/caffe/layers/absval_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/absval_layer.cu) + +* Sample + + layer { + name: "layer" + bottom: "in" + top: "out" + type: "AbsVal" + } + +The `AbsVal` layer computes the output as abs(x) for each input element x. diff --git a/docs/tutorial/layers/accuracy.md b/docs/tutorial/layers/accuracy.md new file mode 100644 index 00000000..ecf84090 --- /dev/null +++ b/docs/tutorial/layers/accuracy.md @@ -0,0 +1,21 @@ +--- +title: Accuracy and Top-k +--- + +# Accuracy and Top-k + +`Accuracy` scores the output as the accuracy of output with respect to target -- it is not actually a loss and has no backward step. + +* Layer type: `Accuracy` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1AccuracyLayer.html) +* Header: [`./include/caffe/layers/accuracy_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/accuracy_layer.hpp) +* CPU implementation: [`./src/caffe/layers/accuracy_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/accuracy_layer.cpp) +* CUDA GPU implementation: [`./src/caffe/layers/accuracy_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/accuracy_layer.cu) + +## Parameters +* Parameters (`AccuracyParameter accuracy_param`) +* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto)): + +{% highlight Protobuf %} +{% include proto/AccuracyParameter.txt %} +{% endhighlight %} \ No newline at end of file diff --git a/docs/tutorial/layers/argmax.md b/docs/tutorial/layers/argmax.md new file mode 100644 index 00000000..f5f173ac --- /dev/null +++ b/docs/tutorial/layers/argmax.md @@ -0,0 +1,19 @@ +--- +title: ArgMax Layer +--- + +# ArgMax Layer + +* Layer type: `ArgMax` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1ArgMaxLayer.html) +* Header: [`./include/caffe/layers/argmax_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/argmax_layer.hpp) +* CPU implementation: [`./src/caffe/layers/argmax_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/argmax_layer.cpp) +* CUDA GPU implementation: [`./src/caffe/layers/argmax_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/argmax_layer.cu) + +## Parameters +* Parameters (`ArgMaxParameter argmax_param`) +* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto)): + +{% highlight Protobuf %} +{% include proto/ArgMaxParameter.txt %} +{% endhighlight %} \ No newline at end of file diff --git a/docs/tutorial/layers/batchnorm.md b/docs/tutorial/layers/batchnorm.md new file mode 100644 index 00000000..a5be5ce0 --- /dev/null +++ b/docs/tutorial/layers/batchnorm.md @@ -0,0 +1,20 @@ +--- +title: Batch Norm Layer +--- + +# Batch Norm Layer + +* Layer type: `BatchNorm` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1BatchNormLayer.html) +* Header: [`./include/caffe/layers/batch_norm_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/batch_norm_layer.hpp) +* CPU implementation: [`./src/caffe/layers/batch_norm_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/batch_norm_layer.cpp) +* CUDA GPU implementation: [`./src/caffe/layers/batch_norm_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/batch_norm_layer.cu) + +## Parameters + +* Parameters (`BatchNormParameter batch_norm_param`) +* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): + +{% highlight Protobuf %} +{% include proto/BatchNormParameter.txt %} +{% endhighlight %} diff --git a/docs/tutorial/layers/batchreindex.md b/docs/tutorial/layers/batchreindex.md new file mode 100644 index 00000000..21b36c39 --- /dev/null +++ b/docs/tutorial/layers/batchreindex.md @@ -0,0 +1,16 @@ +--- +title: Batch Reindex Layer +--- + +# Batch Reindex Layer + +* Layer type: `BatchReindex` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1BatchReindexLayer.html) +* Header: [`./include/caffe/layers/batch_reindex_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/batch_reindex_layer.hpp) +* CPU implementation: [`./src/caffe/layers/batch_reindex_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/batch_reindex_layer.cpp) +* CUDA GPU implementation: [`./src/caffe/layers/batch_reindex_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/batch_reindex_layer.cu) + + +## Parameters + +No parameters. diff --git a/docs/tutorial/layers/bias.md b/docs/tutorial/layers/bias.md new file mode 100644 index 00000000..d3a00c2f --- /dev/null +++ b/docs/tutorial/layers/bias.md @@ -0,0 +1,19 @@ +--- +title: Bias Layer +--- + +# Bias Layer + +* Layer type: `Bias` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1BiasLayer.html) +* Header: [`./include/caffe/layers/bias_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/bias_layer.hpp) +* CPU implementation: [`./src/caffe/layers/bias_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/bias_layer.cpp) +* CUDA GPU implementation: [`./src/caffe/layers/bias_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/bias_layer.cu) + +## Parameters +* Parameters (`BiasParameter bias_param`) +* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto)): + +{% highlight Protobuf %} +{% include proto/BiasParameter.txt %} +{% endhighlight %} diff --git a/docs/tutorial/layers/bnll.md b/docs/tutorial/layers/bnll.md new file mode 100644 index 00000000..2b68b79f --- /dev/null +++ b/docs/tutorial/layers/bnll.md @@ -0,0 +1,25 @@ +--- +title: BNLL Layer +--- + +# BNLL Layer + +* Layer type: `BNLL` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1BNLLLayer.html) +* Header: [`./include/caffe/layers/bnll_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/bnll_layer.hpp) +* CPU implementation: [`./src/caffe/layers/bnll_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/bnll_layer.cpp) +* CUDA GPU implementation: [`./src/caffe/layers/bnll_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/bnll_layer.cu) + +The `BNLL` (binomial normal log likelihood) layer computes the output as log(1 + exp(x)) for each input element x. + +## Parameters +No parameters. + +## Sample + + layer { + name: "layer" + bottom: "in" + top: "out" + type: BNLL + } diff --git a/docs/tutorial/layers/concat.md b/docs/tutorial/layers/concat.md new file mode 100644 index 00000000..c7b25395 --- /dev/null +++ b/docs/tutorial/layers/concat.md @@ -0,0 +1,40 @@ +--- +title: Concat Layer +--- + +# Concat Layer + +* Layer type: `Concat` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1ConcatLayer.html) +* Header: [`./include/caffe/layers/concat_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/concat_layer.hpp) +* CPU implementation: [`./src/caffe/layers/concat_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/concat_layer.cpp) +* CUDA GPU implementation: [`./src/caffe/layers/concat_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/concat_layer.cu) +* Input + - `n_i * c_i * h * w` for each input blob i from 1 to K. +* Output + - if `axis = 0`: `(n_1 + n_2 + ... + n_K) * c_1 * h * w`, and all input `c_i` should be the same. + - if `axis = 1`: `n_1 * (c_1 + c_2 + ... + c_K) * h * w`, and all input `n_i` should be the same. +* Sample + + layer { + name: "concat" + bottom: "in1" + bottom: "in2" + top: "out" + type: "Concat" + concat_param { + axis: 1 + } + } + +The `Concat` layer is a utility layer that concatenates its multiple input blobs to one single output blob. + +## Parameters +* Parameters (`ConcatParameter concat_param`) + - Optional + - `axis` [default 1]: 0 for concatenation along num and 1 for channels. +* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto)): + +{% highlight Protobuf %} +{% include proto/ConcatParameter.txt %} +{% endhighlight %} diff --git a/docs/tutorial/layers/contrastiveloss.md b/docs/tutorial/layers/contrastiveloss.md new file mode 100644 index 00000000..bb1859d9 --- /dev/null +++ b/docs/tutorial/layers/contrastiveloss.md @@ -0,0 +1,20 @@ +--- +title: Contrastive Loss Layer +--- + +# Contrastive Loss Layer + +* Layer type: `ContrastiveLoss` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1ContrastiveLossLayer.html) +* Header: [`./include/caffe/layers/contrastive_loss_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/contrastive_loss_layer.hpp) +* CPU implementation: [`./src/caffe/layers/contrastive_loss_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/contrastive_loss_layer.cpp) +* CUDA GPU implementation: [`./src/caffe/layers/contrastive_loss_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/contrastive_loss_layer.cu) + +## Parameters + +* Parameters (`ContrastiveLossParameter contrastive_loss_param`) +* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto)): + +{% highlight Protobuf %} +{% include proto/ContrastiveLossParameter.txt %} +{% endhighlight %} diff --git a/docs/tutorial/layers/convolution.md b/docs/tutorial/layers/convolution.md new file mode 100644 index 00000000..cc9f4fd0 --- /dev/null +++ b/docs/tutorial/layers/convolution.md @@ -0,0 +1,63 @@ +--- +title: Convolution Layer +--- + +# Convolution Layer + +* Layer type: `Convolution` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1ConvolutionLayer.html) +* Header: [`./include/caffe/layers/conv_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/conv_layer.hpp) +* CPU implementation: [`./src/caffe/layers/conv_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/conv_layer.cpp) +* CUDA GPU implementation: [`./src/caffe/layers/conv_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/conv_layer.cu) +* Input + - `n * c_i * h_i * w_i` +* Output + - `n * c_o * h_o * w_o`, where `h_o = (h_i + 2 * pad_h - kernel_h) / stride_h + 1` and `w_o` likewise. + +The `Convolution` layer convolves the input image with a set of learnable filters, each producing one feature map in the output image. + +## Sample + +Sample (as seen in [`./models/bvlc_reference_caffenet/train_val.prototxt`](https://github.com/BVLC/caffe/blob/master/models/bvlc_reference_caffenet/train_val.prototxt)): + + layer { + name: "conv1" + type: "Convolution" + bottom: "data" + top: "conv1" + # learning rate and decay multipliers for the filters + param { lr_mult: 1 decay_mult: 1 } + # learning rate and decay multipliers for the biases + param { lr_mult: 2 decay_mult: 0 } + convolution_param { + num_output: 96 # learn 96 filters + kernel_size: 11 # each filter is 11x11 + stride: 4 # step 4 pixels between each filter application + weight_filler { + type: "gaussian" # initialize the filters from a Gaussian + std: 0.01 # distribution with stdev 0.01 (default mean: 0) + } + bias_filler { + type: "constant" # initialize the biases to zero (0) + value: 0 + } + } + } + +## Parameters +* Parameters (`ConvolutionParameter convolution_param`) + - Required + - `num_output` (`c_o`): the number of filters + - `kernel_size` (or `kernel_h` and `kernel_w`): specifies height and width of each filter + - Strongly Recommended + - `weight_filler` [default `type: 'constant' value: 0`] + - Optional + - `bias_term` [default `true`]: specifies whether to learn and apply a set of additive biases to the filter outputs + - `pad` (or `pad_h` and `pad_w`) [default 0]: specifies the number of pixels to (implicitly) add to each side of the input + - `stride` (or `stride_h` and `stride_w`) [default 1]: specifies the intervals at which to apply the filters to the input + - `group` (g) [default 1]: If g > 1, we restrict the connectivity of each filter to a subset of the input. Specifically, the input and output channels are separated into g groups, and the $$i$$th output group channels will be only connected to the $$i$$th input group channels. +* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto)): + +{% highlight Protobuf %} +{% include proto/ConvolutionParameter.txt %} +{% endhighlight %} diff --git a/docs/tutorial/layers/crop.md b/docs/tutorial/layers/crop.md new file mode 100644 index 00000000..28f91241 --- /dev/null +++ b/docs/tutorial/layers/crop.md @@ -0,0 +1,20 @@ +--- +title: Crop Layer +--- + +# Crop Layer + +* Layer type: `Crop` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1CropLayer.html) +* Header: [`./include/caffe/layers/crop_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/crop_layer.hpp) +* CPU implementation: [`./src/caffe/layers/crop_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/crop_layer.cpp) +* CUDA GPU implementation: [`./src/caffe/layers/crop_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/crop_layer.cu) + +## Parameters + +* Parameters (`CropParameter crop_param`) +* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto)): + +{% highlight Protobuf %} +{% include proto/CropParameter.txt %} +{% endhighlight %} diff --git a/docs/tutorial/layers/data.md b/docs/tutorial/layers/data.md new file mode 100644 index 00000000..58e0dcaa --- /dev/null +++ b/docs/tutorial/layers/data.md @@ -0,0 +1,29 @@ +--- +title: Database Layer +--- + +# Database Layer + +* Layer type: `Data` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1DataLayer.html) +* Header: [`./include/caffe/layers/data_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/data_layer.hpp) +* CPU implementation: [`./src/caffe/layers/data_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/data_layer.cpp) + + +## Parameters + +* Parameters (`DataParameter data_param`) +* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto)): + +{% highlight Protobuf %} +{% include proto/DataParameter.txt %} +{% endhighlight %} + +* Parameters + - Required + - `source`: the name of the directory containing the database + - `batch_size`: the number of inputs to process at one time + - Optional + - `rand_skip`: skip up to this number of inputs at the beginning; useful for asynchronous sgd + - `backend` [default `LEVELDB`]: choose whether to use a `LEVELDB` or `LMDB` + diff --git a/docs/tutorial/layers/deconvolution.md b/docs/tutorial/layers/deconvolution.md new file mode 100644 index 00000000..2eff967d --- /dev/null +++ b/docs/tutorial/layers/deconvolution.md @@ -0,0 +1,22 @@ +--- +title: Deconvolution Layer +--- + +# Deconvolution Layer + +* Layer type: `Deconvolution` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1DeconvolutionLayer.html) +* Header: [`./include/caffe/layers/deconv_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/deconv_layer.hpp) +* CPU implementation: [`./src/caffe/layers/deconv_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/deconv_layer.cpp) +* CUDA GPU implementation: [`./src/caffe/layers/deconv_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/deconv_layer.cu) + +## Parameters + +Uses the same parameters as the Convolution layer. + +* Parameters (`ConvolutionParameter convolution_param`) +* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto)): + +{% highlight Protobuf %} +{% include proto/ConvolutionParameter.txt %} +{% endhighlight %} diff --git a/docs/tutorial/layers/dropout.md b/docs/tutorial/layers/dropout.md new file mode 100644 index 00000000..d8c6f955 --- /dev/null +++ b/docs/tutorial/layers/dropout.md @@ -0,0 +1,20 @@ +--- +title: Dropout Layer +--- + +# Dropout Layer + +* Layer type: `Dropout` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1DropoutLayer.html) +* Header: [`./include/caffe/layers/dropout_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/dropout_layer.hpp) +* CPU implementation: [`./src/caffe/layers/dropout_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/dropout_layer.cpp) +* CUDA GPU implementation: [`./src/caffe/layers/dropout_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/dropout_layer.cu) + +## Parameters + +* Parameters (`DropoutParameter dropout_param`) +* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto)): + +{% highlight Protobuf %} +{% include proto/DropoutParameter.txt %} +{% endhighlight %} diff --git a/docs/tutorial/layers/dummydata.md b/docs/tutorial/layers/dummydata.md new file mode 100644 index 00000000..d069f9c5 --- /dev/null +++ b/docs/tutorial/layers/dummydata.md @@ -0,0 +1,20 @@ +--- +title: Dummy Data Layer +--- + +# Dummy Data Layer + +* Layer type: `DummyData` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1DummyDataLayer.html) +* Header: [`./include/caffe/layers/dummy_data_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/dummy_data_layer.hpp) +* CPU implementation: [`./src/caffe/layers/dummy_data_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/dummy_data_layer.cpp) + + +## Parameters + +* Parameters (`DummyDataParameter dummy_data_param`) +* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto)): + +{% highlight Protobuf %} +{% include proto/DummyDataParameter.txt %} +{% endhighlight %} diff --git a/docs/tutorial/layers/eltwise.md b/docs/tutorial/layers/eltwise.md new file mode 100644 index 00000000..70fe7910 --- /dev/null +++ b/docs/tutorial/layers/eltwise.md @@ -0,0 +1,20 @@ +--- +title: Eltwise Layer +--- + +# Eltwise Layer + +* Layer type: `Eltwise` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1EltwiseLayer.html) +* Header: [`./include/caffe/layers/eltwise_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/eltwise_layer.hpp) +* CPU implementation: [`./src/caffe/layers/eltwise_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/eltwise_layer.cpp) +* CUDA GPU implementation: [`./src/caffe/layers/eltwise_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/eltwise_layer.cu) + +## Parameters + +* Parameters (`EltwiseParameter eltwise_param`) +* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto)): + +{% highlight Protobuf %} +{% include proto/EltwiseParameter.txt %} +{% endhighlight %} diff --git a/docs/tutorial/layers/elu.md b/docs/tutorial/layers/elu.md new file mode 100644 index 00000000..11db0f0e --- /dev/null +++ b/docs/tutorial/layers/elu.md @@ -0,0 +1,25 @@ +--- +title: ELU Layer +--- + +# ELU Layer + +* Layer type: `ELU` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1ELULayer.html) +* Header: [`./include/caffe/layers/elu_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/elu_layer.hpp) +* CPU implementation: [`./src/caffe/layers/elu_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/elu_layer.cpp) +* CUDA GPU implementation: [`./src/caffe/layers/elu_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/elu_layer.cu) + +## References + +* Clevert, Djork-Arne, Thomas Unterthiner, and Sepp Hochreiter. + "Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs)" [arXiv:1511.07289](https://arxiv.org/abs/1511.07289). (2015). + +## Parameters + +* Parameters (`ELUParameter elu_param`) +* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): + +{% highlight Protobuf %} +{% include proto/ELUParameter.txt %} +{% endhighlight %} diff --git a/docs/tutorial/layers/embed.md b/docs/tutorial/layers/embed.md new file mode 100644 index 00000000..271636d8 --- /dev/null +++ b/docs/tutorial/layers/embed.md @@ -0,0 +1,20 @@ +--- +title: Embed Layer +--- + +# Embed Layer + +* Layer type: `Embed` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1EmbedLayer.html) +* Header: [`./include/caffe/layers/embed_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/embed_layer.hpp) +* CPU implementation: [`./src/caffe/layers/embed_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/embed_layer.cpp) +* CUDA GPU implementation: [`./src/caffe/layers/embed_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/embed_layer.cu) + +## Parameters + +* Parameters (`EmbedParameter embed_param`) +* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): + +{% highlight Protobuf %} +{% include proto/EmbedParameter.txt %} +{% endhighlight %} diff --git a/docs/tutorial/layers/euclideanloss.md b/docs/tutorial/layers/euclideanloss.md new file mode 100644 index 00000000..c1b72084 --- /dev/null +++ b/docs/tutorial/layers/euclideanloss.md @@ -0,0 +1,16 @@ +--- +title: Euclidean Loss Layer +--- +# Sum-of-Squares / Euclidean Loss Layer + +* Layer type: `EuclideanLoss` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1EuclideanLossLayer.html) +* Header: [`./include/caffe/layers/euclidean_loss_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/euclidean_loss_layer.hpp) +* CPU implementation: [`./src/caffe/layers/euclidean_loss_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/euclidean_loss_layer.cpp) +* CUDA GPU implementation: [`./src/caffe/layers/euclidean_loss_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/euclidean_loss_layer.cu) + +The Euclidean loss layer computes the sum of squares of differences of its two inputs, $$\frac 1 {2N} \sum_{i=1}^N \| x^1_i - x^2_i \|_2^2$$. + +## Parameters + +Does not take any parameters. diff --git a/docs/tutorial/layers/exp.md b/docs/tutorial/layers/exp.md new file mode 100644 index 00000000..ef2500ec --- /dev/null +++ b/docs/tutorial/layers/exp.md @@ -0,0 +1,24 @@ +--- +title: Exponential Layer +--- + +# Exponential Layer + +* Layer type: `Exp` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1ExpLayer.html) +* Header: [`./include/caffe/layers/exp_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/exp_layer.hpp) +* CPU implementation: [`./src/caffe/layers/exp_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/exp_layer.cpp) +* CUDA GPU implementation: [`./src/caffe/layers/exp_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/exp_layer.cu) + +## Parameters + +* Parameters (`Parameter exp_param`) +* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): + +{% highlight Protobuf %} +{% include proto/ExpParameter.txt %} +{% endhighlight %} + +## See also + +* [Power layer](power.html) diff --git a/docs/tutorial/layers/filter.md b/docs/tutorial/layers/filter.md new file mode 100644 index 00000000..aeda9ee6 --- /dev/null +++ b/docs/tutorial/layers/filter.md @@ -0,0 +1,15 @@ +--- +title: Filter Layer +--- + +# Filter Layer + +* Layer type: `Filter` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1FilterLayer.html) +* Header: [`./include/caffe/layers/filter_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/filter_layer.hpp) +* CPU implementation: [`./src/caffe/layers/filter_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/filter_layer.cpp) +* CUDA GPU implementation: [`./src/caffe/layers/filter_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/filter_layer.cu) + +## Parameters + +Does not take any parameters. diff --git a/docs/tutorial/layers/flatten.md b/docs/tutorial/layers/flatten.md new file mode 100644 index 00000000..ecf08262 --- /dev/null +++ b/docs/tutorial/layers/flatten.md @@ -0,0 +1,21 @@ +--- +title: Flatten Layer +--- + +# Flatten Layer + +* Layer type: `Flatten` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1FlattenLayer.html) +* Header: [`./include/caffe/layers/flatten_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/flatten_layer.hpp) +* CPU implementation: [`./src/caffe/layers/flatten_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/flatten_layer.cpp) + +The `Flatten` layer is a utility layer that flattens an input of shape `n * c * h * w` to a simple vector output of shape `n * (c*h*w)`. + +## Parameters + +* Parameters (`FlattenParameter flatten_param`) +* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): + +{% highlight Protobuf %} +{% include proto/FlattenParameter.txt %} +{% endhighlight %} diff --git a/docs/tutorial/layers/hdf5data.md b/docs/tutorial/layers/hdf5data.md new file mode 100644 index 00000000..d6b7ea24 --- /dev/null +++ b/docs/tutorial/layers/hdf5data.md @@ -0,0 +1,20 @@ +--- +title: HDF5 Data Layer +--- + +# HDF5 Data Layer + +* Layer type: `HDF5Data` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1HDF5DataLayer.html) +* Header: [`./include/caffe/layers/hdf5_data_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/hdf5_data_layer.hpp) +* CPU implementation: [`./src/caffe/layers/hdf5_data_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/hdf5_data_layer.cpp) +* CUDA GPU implementation: [`./src/caffe/layers/hdf5_data_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/hdf5_data_layer.cu) + +## Parameters + +* Parameters (`HDF5DataParameter hdf5_data_param`) +* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): + +{% highlight Protobuf %} +{% include proto/HDF5DataParameter.txt %} +{% endhighlight %} diff --git a/docs/tutorial/layers/hdf5output.md b/docs/tutorial/layers/hdf5output.md new file mode 100644 index 00000000..cfbe4ddb --- /dev/null +++ b/docs/tutorial/layers/hdf5output.md @@ -0,0 +1,25 @@ +--- +title: HDF5 Output Layer +--- + +# HDF5 Output Layer + +* Layer type: `HDF5Output` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1HDF5OutputLayer.html) +* Header: [`./include/caffe/layers/hdf5_output_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/hdf5_output_layer.hpp) +* CPU implementation: [`./src/caffe/layers/hdf5_output_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/hdf5_output_layer.cpp) +* CUDA GPU implementation: [`./src/caffe/layers/hdf5_output_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/hdf5_output_layer.cu) + +The HDF5 output layer performs the opposite function of the other layers in this section: it writes its input blobs to disk. + +## Parameters + +* Parameters (`HDF5OutputParameter hdf5_output_param`) + - Required + - `file_name`: name of file to write to + +* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): + +{% highlight Protobuf %} +{% include proto/HDF5OutputParameter.txt %} +{% endhighlight %} diff --git a/docs/tutorial/layers/hingeloss.md b/docs/tutorial/layers/hingeloss.md new file mode 100644 index 00000000..ef4fd95e --- /dev/null +++ b/docs/tutorial/layers/hingeloss.md @@ -0,0 +1,19 @@ +--- +title: Hinge Loss Layer +--- + +# Hinge (L1, L2) Loss Layer + +* Layer type: `HingeLoss` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1HingeLossLayer.html) +* Header: [`./include/caffe/layers/hinge_loss_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/hinge_loss_layer.hpp) +* CPU implementation: [`./src/caffe/layers/hinge_loss_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/hinge_loss_layer.cpp) + +## Parameters + +* Parameters (`HingeLossParameter hinge_loss_param`) +* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): + +{% highlight Protobuf %} +{% include proto/HingeLossParameter.txt %} +{% endhighlight %} diff --git a/docs/tutorial/layers/im2col.md b/docs/tutorial/layers/im2col.md new file mode 100644 index 00000000..0badc1cd --- /dev/null +++ b/docs/tutorial/layers/im2col.md @@ -0,0 +1,16 @@ +--- +title: Im2col Layer +--- + +# im2col + +* File type: `Im2col` +* Header: [`./include/caffe/layers/im2col_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/im2col_layer.hpp) +* CPU implementation: [`./src/caffe/layers/im2col_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/im2col_layer.cpp) +* CUDA GPU implementation: [`./src/caffe/layers/im2col_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/im2col_layer.cu) + +`Im2col` is a helper for doing the image-to-column transformation that you most +likely do not need to know about. This is used in Caffe's original convolution +to do matrix multiplication by laying out all patches into a matrix. + + diff --git a/docs/tutorial/layers/imagedata.md b/docs/tutorial/layers/imagedata.md new file mode 100644 index 00000000..82c8a600 --- /dev/null +++ b/docs/tutorial/layers/imagedata.md @@ -0,0 +1,27 @@ +--- +title: ImageData Layer +--- + +# ImageData Layer + +* Layer type: `ImageData` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1ImageDataLayer.html) +* Header: [`./include/caffe/layers/image_data_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/image_data_layer.hpp) +* CPU implementation: [`./src/caffe/layers/image_data_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/image_data_layer.cpp) + +## Parameters + +* Parameters (`ImageDataParameter image_data_parameter`) + - Required + - `source`: name of a text file, with each line giving an image filename and label + - `batch_size`: number of images to batch together + - Optional + - `rand_skip` + - `shuffle` [default false] + - `new_height`, `new_width`: if provided, resize all images to this size + +* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): + +{% highlight Protobuf %} +{% include proto/ImageDataParameter.txt %} +{% endhighlight %} diff --git a/docs/tutorial/layers/infogainloss.md b/docs/tutorial/layers/infogainloss.md new file mode 100644 index 00000000..86140b6c --- /dev/null +++ b/docs/tutorial/layers/infogainloss.md @@ -0,0 +1,24 @@ +--- +title: Infogain Loss Layer +--- + +# Infogain Loss Layer + +* Layer type: `InfogainLoss` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1InfogainLossLayer.html) +* Header: [`./include/caffe/layers/infogain_loss_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/infogain_loss_layer.hpp) +* CPU implementation: [`./src/caffe/layers/infogain_loss_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/infogain_loss_layer.cpp) +* CUDA GPU implementation: [`./src/caffe/layers/infogain_loss_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/infogain_loss_layer.cu) + +A generalization of [MultinomialLogisticLossLayer](layers/multinomiallogisticloss.md) that takes an "information gain" (infogain) matrix specifying the "value" of all label pairs. + +Equivalent to the [MultinomialLogisticLossLayer](layers/multinomiallogisticloss.md) if the infogain matrix is the identity. + +## Parameters + +* Parameters (`Parameter infogain_param`) +* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): + +{% highlight Protobuf %} +{% include proto/InfogainLossParameter.txt %} +{% endhighlight %} diff --git a/docs/tutorial/layers/innerproduct.md b/docs/tutorial/layers/innerproduct.md new file mode 100644 index 00000000..98b9bea8 --- /dev/null +++ b/docs/tutorial/layers/innerproduct.md @@ -0,0 +1,59 @@ +--- +title: Inner Product / Fully Connected Layer +--- + +# Inner Product / Fully Connected Layer + +* Layer type: `InnerProduct` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1InnerProductLayer.html) +* Header: [`./include/caffe/layers/inner_product_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/inner_product_layer.hpp) +* CPU implementation: [`./src/caffe/layers/inner_product_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/inner_product_layer.cpp) +* CUDA GPU implementation: [`./src/caffe/layers/inner_product_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/inner_product_layer.cu) + +* Input + - `n * c_i * h_i * w_i` +* Output + - `n * c_o * 1 * 1` +* Sample + + layer { + name: "fc8" + type: "InnerProduct" + # learning rate and decay multipliers for the weights + param { lr_mult: 1 decay_mult: 1 } + # learning rate and decay multipliers for the biases + param { lr_mult: 2 decay_mult: 0 } + inner_product_param { + num_output: 1000 + weight_filler { + type: "gaussian" + std: 0.01 + } + bias_filler { + type: "constant" + value: 0 + } + } + bottom: "fc7" + top: "fc8" + } + +The `InnerProduct` layer (also usually referred to as the fully connected layer) treats the input as a simple vector and produces an output in the form of a single vector (with the blob's height and width set to 1). + + +## Parameters + +* Parameters (`InnerProductParameter inner_product_param`) + - Required + - `num_output` (`c_o`): the number of filters + - Strongly recommended + - `weight_filler` [default `type: 'constant' value: 0`] + - Optional + - `bias_filler` [default `type: 'constant' value: 0`] + - `bias_term` [default `true`]: specifies whether to learn and apply a set of additive biases to the filter outputs +* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): + +{% highlight Protobuf %} +{% include proto/InnerProductParameter.txt %} +{% endhighlight %} + diff --git a/docs/tutorial/layers/input.md b/docs/tutorial/layers/input.md new file mode 100644 index 00000000..b74c35d2 --- /dev/null +++ b/docs/tutorial/layers/input.md @@ -0,0 +1,19 @@ +--- +title: Input Layer +--- + +# Input Layer + +* Layer type: `Input` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1InputLayer.html) +* Header: [`./include/caffe/layers/input_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/input_layer.hpp) +* CPU implementation: [`./src/caffe/layers/input_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/input_layer.cpp) + +## Parameters + +* Parameters (`InputParameter input_param`) +* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto)): + +{% highlight Protobuf %} +{% include proto/InputParameter.txt %} +{% endhighlight %} diff --git a/docs/tutorial/layers/log.md b/docs/tutorial/layers/log.md new file mode 100644 index 00000000..df520374 --- /dev/null +++ b/docs/tutorial/layers/log.md @@ -0,0 +1,20 @@ +--- +title: Log Layer +--- + +# Log Layer + +* Layer type: `Log` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1LogLayer.html) +* Header: [`./include/caffe/layers/log_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/log_layer.hpp) +* CPU implementation: [`./src/caffe/layers/log_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/log_layer.cpp) +* CUDA GPU implementation: [`./src/caffe/layers/log_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/log_layer.cu) + +## Parameters + +* Parameters (`Parameter log_param`) +* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): + +{% highlight Protobuf %} +{% include proto/LogParameter.txt %} +{% endhighlight %} diff --git a/docs/tutorial/layers/lrn.md b/docs/tutorial/layers/lrn.md new file mode 100644 index 00000000..387311c2 --- /dev/null +++ b/docs/tutorial/layers/lrn.md @@ -0,0 +1,28 @@ +--- +title: Local Response Normalization (LRN) +--- + +# Local Response Normalization (LRN) + +* Layer type: `LRN` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1LRNLayer.html) +* Header: [`./include/caffe/layers/lrn_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/lrn_layer.hpp) +* CPU Implementation: [`./src/caffe/layers/lrn_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/lrn_layer.cpp) +* CUDA GPU Implementation: [`./src/caffe/layers/lrn_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/lrn_layer.cu) +* Parameters (`LRNParameter lrn_param`) + - Optional + - `local_size` [default 5]: the number of channels to sum over (for cross channel LRN) or the side length of the square region to sum over (for within channel LRN) + - `alpha` [default 1]: the scaling parameter (see below) + - `beta` [default 5]: the exponent (see below) + - `norm_region` [default `ACROSS_CHANNELS`]: whether to sum over adjacent channels (`ACROSS_CHANNELS`) or nearby spatial locaitons (`WITHIN_CHANNEL`) + +The local response normalization layer performs a kind of "lateral inhibition" by normalizing over local input regions. In `ACROSS_CHANNELS` mode, the local regions extend across nearby channels, but have no spatial extent (i.e., they have shape `local_size x 1 x 1`). In `WITHIN_CHANNEL` mode, the local regions extend spatially, but are in separate channels (i.e., they have shape `1 x local_size x local_size`). Each input value is divided by $$(1 + (\alpha/n) \sum_i x_i^2)^\beta$$, where $$n$$ is the size of each local region, and the sum is taken over the region centered at that value (zero padding is added where necessary). + +## Parameters + +* Parameters (`Parameter lrn_param`) +* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): + +{% highlight Protobuf %} +{% include proto/BatchNormParameter.txt %} +{% endhighlight %} diff --git a/docs/tutorial/layers/lstm.md b/docs/tutorial/layers/lstm.md new file mode 100644 index 00000000..8e4095e9 --- /dev/null +++ b/docs/tutorial/layers/lstm.md @@ -0,0 +1,21 @@ +--- +title: LSTM Layer +--- + +# LSTM Layer + +* Layer type: `LSTM` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1LSTMLayer.html) +* Header: [`./include/caffe/layers/lstm_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/lstm_layer.hpp) +* CPU implementation: [`./src/caffe/layers/lstm_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/lstm_layer.cpp) +* CPU implementation (helper): [`./src/caffe/layers/lstm_unit_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/lstm_unit_layer.cpp) +* CUDA GPU implementation (helper): [`./src/caffe/layers/lstm_unit_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/lstm_unit_layer.cu) + +## Parameters + +* Parameters (`Parameter recurrent_param`) +* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): + +{% highlight Protobuf %} +{% include proto/RecurrentParameter.txt %} +{% endhighlight %} diff --git a/docs/tutorial/layers/memorydata.md b/docs/tutorial/layers/memorydata.md new file mode 100644 index 00000000..754e62ae --- /dev/null +++ b/docs/tutorial/layers/memorydata.md @@ -0,0 +1,25 @@ +--- +title: Memory Data Layer +--- + +# Memory Data Layer + +* Layer type: `MemoryData` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1MemoryDataLayer.html) +* Header: [`./include/caffe/layers/memory_data_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/memory_data_layer.hpp) +* CPU implementation: [`./src/caffe/layers/memory_data_layer.cpu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/memory_data_layer.cpu) + +The memory data layer reads data directly from memory, without copying it. In order to use it, one must call `MemoryDataLayer::Reset` (from C++) or `Net.set_input_arrays` (from Python) in order to specify a source of contiguous data (as 4D row major array), which is read one batch-sized chunk at a time. + +# Parameters + +* Parameters (`MemoryDataParameter memory_data_param`) +* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): + +{% highlight Protobuf %} +{% include proto/MemoryDataParameter.txt %} +{% endhighlight %} + +* Parameters + - Required + - `batch_size`, `channels`, `height`, `width`: specify the size of input chunks to read from memory diff --git a/docs/tutorial/layers/multinomiallogisticloss.md b/docs/tutorial/layers/multinomiallogisticloss.md new file mode 100644 index 00000000..a28ab914 --- /dev/null +++ b/docs/tutorial/layers/multinomiallogisticloss.md @@ -0,0 +1,19 @@ +--- +title: Multinomial Logistic Loss Layer +--- + +# Multinomial Logistic Loss Layer + +* Layer type: `MultinomialLogisticLoss` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1MultinomialLogisticLossLayer.html) +* Header: [`./include/caffe/layers/multinomial_logistic_loss_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/multinomial_logistic_loss_layer.hpp) +* CPU implementation: [`./src/caffe/layers/multinomial_logistic_loss_layer.cpu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/multinomial_logistic_loss_layer.cpu) + +## Parameters + +* Parameters (`LossParameter loss_param`) +* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): + +{% highlight Protobuf %} +{% include proto/LossParameter.txt %} +{% endhighlight %} diff --git a/docs/tutorial/layers/mvn.md b/docs/tutorial/layers/mvn.md new file mode 100644 index 00000000..08e44887 --- /dev/null +++ b/docs/tutorial/layers/mvn.md @@ -0,0 +1,20 @@ +--- +title: Mean-Variance Normalization (MVN) Layer +--- + +# Mean-Variance Normalization (MVN) Layer + +* Layer type: `MVN` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1MVNLayer.html) +* Header: [`./include/caffe/layers/mvn_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/mvn_layer.hpp) +* CPU implementation: [`./src/caffe/layers/mvn_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/mvn_layer.cpp) +* CUDA GPU implementation: [`./src/caffe/layers/mvn_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/mvn_layer.cu) + +## Parameters + +* Parameters (`MVNParameter mvn_param`) +* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): + +{% highlight Protobuf %} +{% include proto/MVNParameter.txt %} +{% endhighlight %} diff --git a/docs/tutorial/layers/parameter.md b/docs/tutorial/layers/parameter.md new file mode 100644 index 00000000..b7e85ec5 --- /dev/null +++ b/docs/tutorial/layers/parameter.md @@ -0,0 +1,21 @@ +--- +title: Parameter Layer +--- + +# Parameter Layer + +* Layer type: `Parameter` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1ParameterLayer.html) +* Header: [`./include/caffe/layers/parameter_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/parameter_layer.hpp) +* CPU implementation: [`./src/caffe/layers/parameter_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/parameter_layer.cpp) + +See [https://github.com/BVLC/caffe/pull/2079](https://github.com/BVLC/caffe/pull/2079). + +## Parameters + +* Parameters (`ParameterParameter parameter_param`) +* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): + +{% highlight Protobuf %} +{% include proto/ParameterParameter.txt %} +{% endhighlight %} diff --git a/docs/tutorial/layers/pooling.md b/docs/tutorial/layers/pooling.md new file mode 100644 index 00000000..12669ee8 --- /dev/null +++ b/docs/tutorial/layers/pooling.md @@ -0,0 +1,47 @@ +--- +title: Pooling Layer +--- +# Pooling + +* Layer type: `Pooling` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1PoolingLayer.html) +* Header: [`./include/caffe/layers/pooling_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/pooling_layer.hpp) +* CPU implementation: [`./src/caffe/layers/pooling_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/pooling_layer.cpp) +* CUDA GPU implementation: [`./src/caffe/layers/pooling_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/pooling_layer.cu) + +* Input + - `n * c * h_i * w_i` +* Output + - `n * c * h_o * w_o`, where h_o and w_o are computed in the same way as convolution. + +## Parameters + +* Parameters (`PoolingParameter pooling_param`) + - Required + - `kernel_size` (or `kernel_h` and `kernel_w`): specifies height and width of each filter + - Optional + - `pool` [default MAX]: the pooling method. Currently MAX, AVE, or STOCHASTIC + - `pad` (or `pad_h` and `pad_w`) [default 0]: specifies the number of pixels to (implicitly) add to each side of the input + - `stride` (or `stride_h` and `stride_w`) [default 1]: specifies the intervals at which to apply the filters to the input + + +* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): + +{% highlight Protobuf %} +{% include proto/PoolingParameter.txt %} +{% endhighlight %} + +## Sample +* Sample (as seen in [`./models/bvlc_reference_caffenet/train_val.prototxt`](https://github.com/BVLC/caffe/blob/master/models/bvlc_reference_caffenet/train_val.prototxt)) + + layer { + name: "pool1" + type: "Pooling" + bottom: "conv1" + top: "pool1" + pooling_param { + pool: MAX + kernel_size: 3 # pool over a 3x3 region + stride: 2 # step two pixels (in the bottom blob) between pooling regions + } + } diff --git a/docs/tutorial/layers/power.md b/docs/tutorial/layers/power.md new file mode 100644 index 00000000..d6617529 --- /dev/null +++ b/docs/tutorial/layers/power.md @@ -0,0 +1,46 @@ +--- +title: Power Layer +--- + +# Power Layer + +* Layer type: `Power` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1PowerLayer.html) +* Header: [`./include/caffe/layers/power_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/power_layer.hpp) +* CPU implementation: [`./src/caffe/layers/power_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/power_layer.cpp) +* CUDA GPU implementation: [`./src/caffe/layers/power_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/power_layer.cu) + +The `Power` layer computes the output as (shift + scale * x) ^ power for each input element x. + +## Parameters +* Parameters (`PowerParameter power_param`) + - Optional + - `power` [default 1] + - `scale` [default 1] + - `shift` [default 0] + +* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): + +{% highlight Protobuf %} +{% include proto/PowerParameter.txt %} +{% endhighlight %} + + + +## Sample + + layer { + name: "layer" + bottom: "in" + top: "out" + type: "Power" + power_param { + power: 1 + scale: 1 + shift: 0 + } + } + +## See also + +* [Exponential layer](exp.html) diff --git a/docs/tutorial/layers/prelu.md b/docs/tutorial/layers/prelu.md new file mode 100644 index 00000000..e7b7b44a --- /dev/null +++ b/docs/tutorial/layers/prelu.md @@ -0,0 +1,20 @@ +--- +title: PReLU Layer +--- + +# PReLU Layer + +* Layer type: `PReLU` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1PReLULayer.html) +* Header: [`./include/caffe/layers/prelu_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/prelu_layer.hpp) +* CPU implementation: [`./src/caffe/layers/prelu_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/prelu_layer.cpp) +* CUDA GPU implementation: [`./src/caffe/layers/prelu_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/prelu_layer.cu) + +## Parameters + +* Parameters (`PReLUParameter prelu_param`) +* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): + +{% highlight Protobuf %} +{% include proto/PReLUParameter.txt %} +{% endhighlight %} diff --git a/docs/tutorial/layers/python.md b/docs/tutorial/layers/python.md new file mode 100644 index 00000000..2e30b3a7 --- /dev/null +++ b/docs/tutorial/layers/python.md @@ -0,0 +1,27 @@ +--- +title: Python Layer +--- + +# Python Layer + +* Layer type: `Python` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1PythonLayer.html) +* Header: [`./include/caffe/layers/python_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/python_layer.hpp) + +The Python layer allows users to add customized layers without modifying the Caffe core code. + +## Parameters + +* Parameters (`PythonParameter python_param`) +* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): + +{% highlight Protobuf %} +{% include proto/PythonParameter.txt %} +{% endhighlight %} + +## Examples and tutorials + +* Simple Euclidean loss example +** [Python code](https://github.com/BVLC/caffe/blob/master/examples/pycaffe/layers/pyloss.py) +** [Prototxt](https://github.com/BVLC/caffe/blob/master/examples/pycaffe/linreg.prototxt) +* [Tutorial for writing Python layers with DIGITS](https://github.com/NVIDIA/DIGITS/tree/master/examples/python-layer) diff --git a/docs/tutorial/layers/recurrent.md b/docs/tutorial/layers/recurrent.md new file mode 100644 index 00000000..a882b722 --- /dev/null +++ b/docs/tutorial/layers/recurrent.md @@ -0,0 +1,20 @@ +--- +title: Recurrent Layer +--- + +# Recurrent Layer + +* Layer type: `Recurrent` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1RecurrentLayer.html) +* Header: [`./include/caffe/layers/recurrent_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/recurrent_layer.hpp) +* CPU implementation: [`./src/caffe/layers/recurrent_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/recurrent_layer.cpp) +* CUDA GPU implementation: [`./src/caffe/layers/recurrent_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/recurrent_layer.cu) + +## Parameters + +* Parameters (`RecurrentParameter recurrent_param`) +* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): + +{% highlight Protobuf %} +{% include proto/RecurrentParameter.txt %} +{% endhighlight %} diff --git a/docs/tutorial/layers/reduction.md b/docs/tutorial/layers/reduction.md new file mode 100644 index 00000000..db55414b --- /dev/null +++ b/docs/tutorial/layers/reduction.md @@ -0,0 +1,20 @@ +--- +title: Reduction Layer +--- + +# Reduction Layer + +* Layer type: `Reduction` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1ReductionLayer.html) +* Header: [`./include/caffe/layers/reduction_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/reduction_layer.hpp) +* CPU implementation: [`./src/caffe/layers/reduction_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/reduction_layer.cpp) +* CUDA GPU implementation: [`./src/caffe/layers/reduction_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/reduction_layer.cu) + +## Parameters + +* Parameters (`ReductionParameter reduction_param`) +* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): + +{% highlight Protobuf %} +{% include proto/ReductionParameter.txt %} +{% endhighlight %} diff --git a/docs/tutorial/layers/relu.md b/docs/tutorial/layers/relu.md new file mode 100644 index 00000000..01aab0af --- /dev/null +++ b/docs/tutorial/layers/relu.md @@ -0,0 +1,32 @@ +--- +title: ReLU / Rectified-Linear and Leaky-ReLU Layer +--- + +# ReLU / Rectified-Linear and Leaky-ReLU Layer + +* Layer type: `ReLU` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1ReLULayer.html) +* Header: [`./include/caffe/layers/relu_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/relu_layer.hpp) +* CPU implementation: [`./src/caffe/layers/relu_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/relu_layer.cpp) +* CUDA GPU implementation: [`./src/caffe/layers/relu_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/relu_layer.cu) +* Sample (as seen in [`./models/bvlc_reference_caffenet/train_val.prototxt`](https://github.com/BVLC/caffe/blob/master/models/bvlc_reference_caffenet/train_val.prototxt)) + + layer { + name: "relu1" + type: "ReLU" + bottom: "conv1" + top: "conv1" + } + +Given an input value x, The `ReLU` layer computes the output as x if x > 0 and negative_slope * x if x <= 0. When the negative slope parameter is not set, it is equivalent to the standard ReLU function of taking max(x, 0). It also supports in-place computation, meaning that the bottom and the top blob could be the same to preserve memory consumption. + +## Parameters + +* Parameters (`ReLUParameter relu_param`) + - Optional + - `negative_slope` [default 0]: specifies whether to leak the negative part by multiplying it with the slope value rather than setting it to 0. +* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): + +{% highlight Protobuf %} +{% include proto/ReLUParameter.txt %} +{% endhighlight %} diff --git a/docs/tutorial/layers/reshape.md b/docs/tutorial/layers/reshape.md new file mode 100644 index 00000000..92d23f2c --- /dev/null +++ b/docs/tutorial/layers/reshape.md @@ -0,0 +1,51 @@ +--- +title: Reshape Layer +--- + +# Reshape Layer +* Layer type: `Reshape` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1ReshapeLayer.html) +* Header: [`./include/caffe/layers/reshape_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/reshape_layer.hpp) +* Implementation: [`./src/caffe/layers/reshape_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/reshape_layer.cpp) + +* Input + - a single blob with arbitrary dimensions +* Output + - the same blob, with modified dimensions, as specified by `reshape_param` + +* Sample + + layer { + name: "reshape" + type: "Reshape" + bottom: "input" + top: "output" + reshape_param { + shape { + dim: 0 # copy the dimension from below + dim: 2 + dim: 3 + dim: -1 # infer it from the other dimensions + } + } + } + +The `Reshape` layer can be used to change the dimensions of its input, without changing its data. Just like the `Flatten` layer, only the dimensions are changed; no data is copied in the process. + +Output dimensions are specified by the `ReshapeParam` proto. Positive numbers are used directly, setting the corresponding dimension of the output blob. In addition, two special values are accepted for any of the target dimension values: + +* **0** means "copy the respective dimension of the bottom layer". That is, if the bottom has 2 as its 1st dimension, the top will have 2 as its 1st dimension as well, given `dim: 0` as the 1st target dimension. +* **-1** stands for "infer this from the other dimensions". This behavior is similar to that of -1 in *numpy*'s or `[]` for *MATLAB*'s reshape: this dimension is calculated to keep the overall element count the same as in the bottom layer. At most one -1 can be used in a reshape operation. + +As another example, specifying `reshape_param { shape { dim: 0 dim: -1 } }` makes the layer behave in exactly the same way as the `Flatten` layer. + +## Parameters + +* Parameters (`ReshapeParameter reshape_param`) + - Optional: (also see detailed description below) + - `shape` +* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): + +{% highlight Protobuf %} +{% include proto/ReshapeParameter.txt %} +{% endhighlight %} diff --git a/docs/tutorial/layers/rnn.md b/docs/tutorial/layers/rnn.md new file mode 100644 index 00000000..b6fcf471 --- /dev/null +++ b/docs/tutorial/layers/rnn.md @@ -0,0 +1,19 @@ +--- +title: RNN Layer +--- + +# RNN Layer + +* Layer type: `RNN` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1RNNLayer.html) +* Header: [`./include/caffe/layers/rnn_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/rnn_layer.hpp) +* CPU implementation: [`./src/caffe/layers/rnn_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/rnn_layer.cpp) + +## Parameters + +* Parameters (`RecurrentParameter recurrent_param`) +* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): + +{% highlight Protobuf %} +{% include proto/RecurrentParameter.txt %} +{% endhighlight %} diff --git a/docs/tutorial/layers/scale.md b/docs/tutorial/layers/scale.md new file mode 100644 index 00000000..0e27549a --- /dev/null +++ b/docs/tutorial/layers/scale.md @@ -0,0 +1,20 @@ +--- +title: Scale Layer +--- + +# Scale Layer + +* Layer type: `Scale` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1ScaleLayer.html) +* Header: [`./include/caffe/layers/scale_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/scale_layer.hpp) +* CPU implementation: [`./src/caffe/layers/scale_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/scale_layer.cpp) +* CUDA GPU implementation: [`./src/caffe/layers/scale_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/scale_layer.cu) + +## Parameters + +* Parameters (`ScaleParameter scale_param`) +* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): + +{% highlight Protobuf %} +{% include proto/ScaleParameter.txt %} +{% endhighlight %} diff --git a/docs/tutorial/layers/sigmoid.md b/docs/tutorial/layers/sigmoid.md new file mode 100644 index 00000000..50531835 --- /dev/null +++ b/docs/tutorial/layers/sigmoid.md @@ -0,0 +1,20 @@ +--- +title: Sigmoid Layer +--- + +# Sigmoid Layer + +* Layer type: `Sigmoid` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1SigmoidLayer.html) +* Header: [`./include/caffe/layers/sigmoid_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/sigmoid_layer.hpp) +* CPU implementation: [`./src/caffe/layers/sigmoid_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/sigmoid_layer.cpp) +* CUDA GPU implementation: [`./src/caffe/layers/sigmoid_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/sigmoid_layer.cu) + +## Parameters + +* Parameters (`SigmoidParameter sigmoid_param`) +* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): + +{% highlight Protobuf %} +{% include proto/SigmoidParameter.txt %} +{% endhighlight %} diff --git a/docs/tutorial/layers/sigmoidcrossentropyloss.md b/docs/tutorial/layers/sigmoidcrossentropyloss.md new file mode 100644 index 00000000..a6e42cad --- /dev/null +++ b/docs/tutorial/layers/sigmoidcrossentropyloss.md @@ -0,0 +1,13 @@ +--- +title: Sigmoid Cross-Entropy Loss Layer +--- + +# Sigmoid Cross-Entropy Loss Layer + +* Layer type: `SigmoidCrossEntropyLoss` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1SigmoidCrossEntropyLossLayer.html) +* Header: [`./include/caffe/layers/sigmoid_cross_entropy_loss_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/sigmoid_cross_entropy_loss_layer.hpp) +* CPU implementation: [`./src/caffe/layers/sigmoid_cross_entropy_loss_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/sigmoid_cross_entropy_loss_layer.cpp) +* CUDA GPU implementation: [`./src/caffe/layers/sigmoid_cross_entropy_loss_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/sigmoid_cross_entropy_loss_layer.cu) + +To-do. diff --git a/docs/tutorial/layers/silence.md b/docs/tutorial/layers/silence.md new file mode 100644 index 00000000..2c37a9cd --- /dev/null +++ b/docs/tutorial/layers/silence.md @@ -0,0 +1,23 @@ +--- +title: Silence Layer +--- + +# Silence Layer + +* Layer type: `Silence` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1SilenceLayer.html) +* Header: [`./include/caffe/layers/silence_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/silence_layer.hpp) +* CPU implementation: [`./src/caffe/layers/silence_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/silence_layer.cpp) +* CUDA GPU implementation: [`./src/caffe/layers/silence_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/silence_layer.cu) + +Silences a blob, so that it is not printed. + +## Parameters + +* Parameters (`SilenceParameter silence_param`) +* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): + +{% highlight Protobuf %} +{% include proto/BatchNormParameter.txt %} +{% endhighlight %} + diff --git a/docs/tutorial/layers/slice.md b/docs/tutorial/layers/slice.md new file mode 100644 index 00000000..a492f1e8 --- /dev/null +++ b/docs/tutorial/layers/slice.md @@ -0,0 +1,42 @@ +--- +title: Slice Layer +--- + +# Slice Layer + +* Layer type: `Slice` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1SliceLayer.html) +* Header: [`./include/caffe/layers/slice_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/slice_layer.hpp) +* CPU implementation: [`./src/caffe/layers/slice_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/slice_layer.cpp) +* CUDA GPU implementation: [`./src/caffe/layers/slice_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/slice_layer.cu) + +The `Slice` layer is a utility layer that slices an input layer to multiple output layers along a given dimension (currently num or channel only) with given slice indices. + +* Sample + + layer { + name: "slicer_label" + type: "Slice" + bottom: "label" + ## Example of label with a shape N x 3 x 1 x 1 + top: "label1" + top: "label2" + top: "label3" + slice_param { + axis: 1 + slice_point: 1 + slice_point: 2 + } + } + +`axis` indicates the target axis; `slice_point` indicates indexes in the selected dimension (the number of indices must be equal to the number of top blobs minus one). + +## Parameters + +* Parameters (`SliceParameter slice_param`) +* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): + +{% highlight Protobuf %} +{% include proto/SliceParameter.txt %} +{% endhighlight %} + diff --git a/docs/tutorial/layers/softmax.md b/docs/tutorial/layers/softmax.md new file mode 100644 index 00000000..e5d53425 --- /dev/null +++ b/docs/tutorial/layers/softmax.md @@ -0,0 +1,24 @@ +--- +title: Softmax Layer +--- + +# Softmax Layer + +* Layer type: `Softmax` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1SoftmaxLayer.html) +* Header: [`./include/caffe/layers/softmax_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/softmax_layer.hpp) +* CPU implementation: [`./src/caffe/layers/softmax_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/softmax_layer.cpp) +* CUDA GPU implementation: [`./src/caffe/layers/softmax_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/softmax_layer.cu) + +## Parameters + +* Parameters (`SoftmaxParameter softmax_param`) +* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): + +{% highlight Protobuf %} +{% include proto/SoftmaxParameter.txt %} +{% endhighlight %} + +## See also + +* [Softmax loss layer](softmaxwithloss.html) diff --git a/docs/tutorial/layers/softmaxwithloss.md b/docs/tutorial/layers/softmaxwithloss.md new file mode 100644 index 00000000..d9a6774a --- /dev/null +++ b/docs/tutorial/layers/softmaxwithloss.md @@ -0,0 +1,33 @@ +--- +title: Softmax with Loss Layer +--- + +# Softmax with Loss Layer + +* Layer type: `SoftmaxWithLoss` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1SoftmaxWithLossLayer.html) +* Header: [`./include/caffe/layers/softmax_loss_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/softmax_loss_layer.hpp) +* CPU implementation: [`./src/caffe/layers/softmax_loss_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/softmax_loss_layer.cpp) +* CUDA GPU implementation: [`./src/caffe/layers/softmax_loss_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/softmax_loss_layer.cu) + +The softmax loss layer computes the multinomial logistic loss of the softmax of its inputs. It's conceptually identical to a softmax layer followed by a multinomial logistic loss layer, but provides a more numerically stable gradient. + +## Parameters + +* Parameters (`SoftmaxParameter softmax_param`) +* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): + +{% highlight Protobuf %} +{% include proto/SoftmaxParameter.txt %} +{% endhighlight %} + +* Parameters (`LossParameter loss_param`) +* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): + +{% highlight Protobuf %} +{% include proto/LossParameter.txt %} +{% endhighlight %} + +## See also + +* [Softmax layer](softmax.html) diff --git a/docs/tutorial/layers/split.md b/docs/tutorial/layers/split.md new file mode 100644 index 00000000..4fb71d1f --- /dev/null +++ b/docs/tutorial/layers/split.md @@ -0,0 +1,17 @@ +--- +title: Split Layer +--- + +# Split Layer + +* Layer type: `Split` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1SplitLayer.html) +* Header: [`./include/caffe/layers/split_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/split_layer.hpp) +* CPU implementation: [`./src/caffe/layers/split_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/split_layer.cpp) +* CUDA GPU implementation: [`./src/caffe/layers/split_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/split_layer.cu) + +The `Split` layer is a utility layer that splits an input blob to multiple output blobs. This is used when a blob is fed into multiple output layers. + +## Parameters + +Does not take any parameters. diff --git a/docs/tutorial/layers/spp.md b/docs/tutorial/layers/spp.md new file mode 100644 index 00000000..26e58620 --- /dev/null +++ b/docs/tutorial/layers/spp.md @@ -0,0 +1,20 @@ +--- +title: Spatial Pyramid Pooling Layer +--- + +# Spatial Pyramid Pooling Layer + +* Layer type: `SPP` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1SPPLayer.html) +* Header: [`./include/caffe/layers/spp_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/spp_layer.hpp) +* CPU implementation: [`./src/caffe/layers/spp_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/spp_layer.cpp) + + +## Parameters + +* Parameters (`SPPParameter spp_param`) +* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): + +{% highlight Protobuf %} +{% include proto/SPPParameter.txt %} +{% endhighlight %} diff --git a/docs/tutorial/layers/tanh.md b/docs/tutorial/layers/tanh.md new file mode 100644 index 00000000..36063459 --- /dev/null +++ b/docs/tutorial/layers/tanh.md @@ -0,0 +1,18 @@ +--- +title: TanH Layer +--- + +# TanH Layer + +* Header: [`./include/caffe/layers/tanh_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/tanh_layer.hpp) +* CPU implementation: [`./src/caffe/layers/tanh_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/tanh_layer.cpp) +* CUDA GPU implementation: [`./src/caffe/layers/tanh_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/tanh_layer.cu) + +## Parameters + +* Parameters (`TanHParameter tanh_param`) +* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): + +{% highlight Protobuf %} +{% include proto/TanHParameter.txt %} +{% endhighlight %} diff --git a/docs/tutorial/layers/threshold.md b/docs/tutorial/layers/threshold.md new file mode 100644 index 00000000..819e9e6f --- /dev/null +++ b/docs/tutorial/layers/threshold.md @@ -0,0 +1,18 @@ +--- +title: Threshold Layer +--- + +# Threshold Layer + +* Header: [`./include/caffe/layers/threshold_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/threshold_layer.hpp) +* CPU implementation: [`./src/caffe/layers/threshold_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/threshold_layer.cpp) +* CUDA GPU implementation: [`./src/caffe/layers/threshold_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/threshold_layer.cu) + +## Parameters + +* Parameters (`ThresholdParameter threshold_param`) +* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): + +{% highlight Protobuf %} +{% include proto/ThresholdParameter.txt %} +{% endhighlight %} diff --git a/docs/tutorial/layers/tile.md b/docs/tutorial/layers/tile.md new file mode 100644 index 00000000..ea03aaa4 --- /dev/null +++ b/docs/tutorial/layers/tile.md @@ -0,0 +1,20 @@ +--- +title: Tile Layer +--- + +# Tile Layer + +* Layer type: `Tile` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1TileLayer.html) +* Header: [`./include/caffe/layers/tile_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/tile_layer.hpp) +* CPU implementation: [`./src/caffe/layers/tile_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/tile_layer.cpp) +* CUDA GPU implementation: [`./src/caffe/layers/tile_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/tile_layer.cu) + +## Parameters + +* Parameters (`TileParameter tile_param`) +* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): + +{% highlight Protobuf %} +{% include proto/TileParameter.txt %} +{% endhighlight %} diff --git a/docs/tutorial/layers/windowdata.md b/docs/tutorial/layers/windowdata.md new file mode 100644 index 00000000..0cb4a8df --- /dev/null +++ b/docs/tutorial/layers/windowdata.md @@ -0,0 +1,19 @@ +--- +title: WindowData Layer +--- + +# WindowData Layer + +* Layer type: `WindowData` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1WindowDataLayer.html) +* Header: [`./include/caffe/layers/window_data_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/window_data_layer.hpp) +* CPU implementation: [`./src/caffe/layers/window_data_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/window_data_layer.cpp) + +## Parameters + +* Parameters (`WindowDataParameter`) +* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): + +{% highlight Protobuf %} +{% include proto/WindowDataParameter.txt %} +{% endhighlight %} diff --git a/scripts/build_docs.sh b/scripts/build_docs.sh index 0e28bd71..4837587a 100755 --- a/scripts/build_docs.sh +++ b/scripts/build_docs.sh @@ -12,6 +12,9 @@ cd $ROOT_DIR # Gather docs. scripts/gather_examples.sh +# Split caffe.proto for inclusion by layer catalogue. +scripts/split_caffe_proto.py + # Generate developer docs. make docs diff --git a/scripts/split_caffe_proto.py b/scripts/split_caffe_proto.py new file mode 100755 index 00000000..7e9dc3e7 --- /dev/null +++ b/scripts/split_caffe_proto.py @@ -0,0 +1,35 @@ +#!/usr/bin/env python +import mmap +import re +import os +import errno + +script_path = os.path.dirname(os.path.realpath(__file__)) + +# a regex to match the parameter definitions in caffe.proto +r = re.compile(r'(?://.*\n)*message ([^ ]*) \{\n(?: .*\n|\n)*\}') + +# create directory to put caffe.proto fragments +try: + os.mkdir( + os.path.join(script_path, + '../docs/_includes/')) + os.mkdir( + os.path.join(script_path, + '../docs/_includes/proto/')) +except OSError as exception: + if exception.errno != errno.EEXIST: + raise + +caffe_proto_fn = os.path.join( + script_path, + '../src/caffe/proto/caffe.proto') + +with open(caffe_proto_fn, 'r') as fin: + + for m in r.finditer(fin.read(), re.MULTILINE): + fn = os.path.join( + script_path, + '../docs/_includes/proto/%s.txt' % m.group(1)) + with open(fn, 'w') as fout: + fout.write(m.group(0))