Skip to content

A Web Application to collect data from pairwise image comparisons via crowdsourcing

License

Notifications You must be signed in to change notification settings

calista-ai/crowdsourcing-app

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

16 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

deep-web-aesthetics-app

Web application for pairwise comparisons between images

Prerequisites

  • Docker
  • Docker-compose

Deployment

Step 1 - Images

Add the images in the folder front-end/public/images/

Step 2 - Environment variables

Add .env file in the root folder of the project which contains the following variables:

Environment variable Description
MONGO_URI MongoDB connection string
PORT Server port
MONGO_PORT MongoDB port
ME_CONFIG_MONGODB_ADMINUSERNAME MongoDB username
ME_CONFIG_MONGODB_ADMINPASSWORD MongoDB password
ME_CONFIG_BASICAUTH_USERNAME Mongo-express username
ME_CONFIG_BASICAUTH_PASSWORD Mongo-express password
NODE_ENV Node environment variable
VOTING_ROUNDS Number of voting rounds of each vote session
VOTING_TIME Voting time in seconds of each comparison
NUMBER_OF_IMAGES Number of images in front-end/public/images/
BASEURL Base URL that is used for the requests

Step 3 - Setup

The file db/utils/comparisons_data.json must contain all possible pairwise comparisons that can be made between the images with random order.

  • To setup with a pre-existing comparisons_data.json file, execute the command:

    ./setup.sh
    
  • To setup by creating a new comparisons_data.json file, execute the command:

    ./setup.sh --create
    

Step 4 - Run

Start:

docker-compose -f docker-compose.yml up --build

Stop:

Ctrl-C

For detached mode:

Start:

docker-compose -f docker-compose.yml up -d --build

Stop:

docker-compose down