-
Notifications
You must be signed in to change notification settings - Fork 0
/
reconstruct.py
449 lines (379 loc) · 20.6 KB
/
reconstruct.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
from core.remesh import calc_vertex_normals
from core.opt import MeshOptimizer
from utils.func import make_sparse_camera, make_round_views
from utils.render import NormalsRenderer
import torch.optim as optim
from tqdm import tqdm
from utils.video_utils import write_video
from omegaconf import OmegaConf
import numpy as np
import os
from PIL import Image
import kornia
import torch
import torch.nn as nn
import trimesh
from icecream import ic
from utils.project_mesh import multiview_color_projection, get_cameras_list
from utils.mesh_utils import to_py3d_mesh, rot6d_to_rotmat, tensor2variable
from utils.project_mesh import project_color, get_cameras_list
from utils.smpl_util import SMPLX
from lib.dataset.mesh_util import apply_vertex_mask, part_removal, poisson, keep_largest
from scipy.spatial.transform import Rotation as R
from scipy.spatial import KDTree
import argparse
#### ------------------- config----------------------
bg_color = np.array([1,1,1])
class colorModel(nn.Module):
def __init__(self, renderer, v, f, c):
super().__init__()
self.renderer = renderer
self.v = v
self.f = f
self.colors = nn.Parameter(c, requires_grad=True)
self.bg_color = torch.from_numpy(bg_color).float().to(self.colors.device)
def forward(self, return_mask=False):
rgba = self.renderer.render(self.v, self.f, colors=self.colors)
if return_mask:
return rgba
else:
mask = rgba[..., 3:]
return rgba[..., :3] * mask + self.bg_color * (1 - mask)
def scale_mesh(vert):
min_bbox, max_bbox = vert.min(0)[0], vert.max(0)[0]
center = (min_bbox + max_bbox) / 2
offset = -center
vert = vert + offset
max_dist = torch.max(torch.sqrt(torch.sum(vert**2, dim=1)))
scale = 1.0 / max_dist
return scale, offset
def save_mesh(save_name, vertices, faces, color=None):
trimesh.Trimesh(
vertices.detach().cpu().numpy(),
faces.detach().cpu().numpy(),
vertex_colors=(color.detach().cpu().numpy() * 255).astype(np.uint8) if color is not None else None) \
.export(save_name)
class ReMesh:
def __init__(self, opt, econ_dataset):
self.opt = opt
self.device = torch.device(f"cuda:{opt.gpu_id}" if torch.cuda.is_available() else "cpu")
self.num_view = opt.num_view
self.out_path = opt.res_path
os.makedirs(self.out_path, exist_ok=True)
self.resolution = opt.resolution
self.views = ['front_face', 'front_right', 'right', 'back', 'left', 'front_left' ]
self.weights = torch.Tensor([1., 0.4, 0.8, 1.0, 0.8, 0.4]).view(6,1,1,1).to(self.device)
self.renderer = self.prepare_render()
# pose prediction
self.econ_dataset = econ_dataset
self.smplx_face = torch.Tensor(econ_dataset.faces.astype(np.int64)).long().to(self.device)
def prepare_render(self):
### ------------------- prepare camera and renderer----------------------
mv, proj = make_sparse_camera(self.opt.cam_path, self.opt.scale, views=[0,1,2,4,6,7], device=self.device)
renderer = NormalsRenderer(mv, proj, [self.resolution, self.resolution], device=self.device)
return renderer
def proj_texture(self, fused_images, vertices, faces):
mesh = to_py3d_mesh(vertices, faces)
mesh = mesh.to(self.device)
camera_focal = 1/2
cameras_list = get_cameras_list([0, 45, 90, 180, 270, 315], device=self.device, focal=camera_focal)
mesh = multiview_color_projection(mesh, fused_images, camera_focal=camera_focal, resolution=self.resolution, weights=self.weights.squeeze().cpu().numpy(),
device=self.device, complete_unseen=True, confidence_threshold=0.2, cameras_list=cameras_list)
return mesh
def get_invisible_idx(self, imgs, vertices, faces):
mesh = to_py3d_mesh(vertices, faces)
mesh = mesh.to(self.device)
camera_focal = 1/2
if self.num_view == 6:
cameras_list = get_cameras_list([0, 45, 90, 180, 270, 315], device=self.device, focal=camera_focal)
elif self.num_view == 4:
cameras_list = get_cameras_list([0, 90, 180, 270], device=self.device, focal=camera_focal)
valid_vert_id = []
vertices_colors = torch.zeros((vertices.shape[0], 3)).float().to(self.device)
valid_cnt = torch.zeros((vertices.shape[0])).to(self.device)
for cam, img, weight in zip(cameras_list, imgs, self.weights.squeeze()):
ret = project_color(mesh, cam, img, eps=0.01, resolution=self.resolution, device=self.device)
# print(ret['valid_colors'].shape)
valid_cnt[ret['valid_verts']] += weight
vertices_colors[ret['valid_verts']] += ret['valid_colors']*weight
valid_mask = valid_cnt > 1
invalid_mask = valid_cnt < 1
vertices_colors[valid_mask] /= valid_cnt[valid_mask][:, None]
# visibility
invisible_vert = valid_cnt < 1
invisible_vert_indices = torch.nonzero(invisible_vert).squeeze()
# vertices_colors[invalid_vert] = torch.tensor([1.0, 0.0, 0.0]).float().to("cuda")
return vertices_colors, invisible_vert_indices
def inpaint_missed_colors(self, all_vertices, all_colors, missing_indices):
all_vertices = all_vertices.detach().cpu().numpy()
all_colors = all_colors.detach().cpu().numpy()
missing_indices = missing_indices.detach().cpu().numpy()
non_missing_indices = np.setdiff1d(np.arange(len(all_vertices)), missing_indices)
kdtree = KDTree(all_vertices[non_missing_indices])
for missing_index in missing_indices:
missing_vertex = all_vertices[missing_index]
_, nearest_index = kdtree.query(missing_vertex.reshape(1, -1))
interpolated_color = all_colors[non_missing_indices[nearest_index]]
all_colors[missing_index] = interpolated_color
return torch.from_numpy(all_colors).to(self.device)
def load_training_data(self, case):
###------------------ load target images -------------------------------
kernal = torch.ones(3, 3)
erode_iters = 2
normals = []
masks = []
colors = []
for idx, view in enumerate(self.views):
# for idx in [0,2,3,4]:
normal = Image.open(f'{self.opt.mv_path}/{case}/normals_{view}_masked.png')
# normal = Image.open(f'{data_path}/{case}/normals/{idx:02d}_rgba.png')
normal = normal.convert('RGBA').resize((self.resolution, self.resolution), Image.BILINEAR)
normal = np.array(normal).astype(np.float32) / 255.
mask = normal[..., 3:] # alpha
mask_troch = torch.from_numpy(mask).unsqueeze(0)
for _ in range(erode_iters):
mask_torch = kornia.morphology.erosion(mask_troch, kernal)
mask_erode = mask_torch.squeeze(0).numpy()
masks.append(mask_erode)
normal = normal[..., :3] * mask_erode
normals.append(normal)
color = Image.open(f'{self.opt.mv_path}/{case}/color_{view}_masked.png')
color = color.convert('RGBA').resize((self.resolution, self.resolution), Image.BILINEAR)
color = np.array(color).astype(np.float32) / 255.
color_mask = color[..., 3:] # alpha
# color_dilate = color[..., :3] * color_mask + bg_color * (1 - color_mask)
color_dilate = color[..., :3] * mask_erode + bg_color * (1 - mask_erode)
colors.append(color_dilate)
masks = np.stack(masks, 0)
masks = torch.from_numpy(masks).to(self.device)
normals = np.stack(normals, 0)
target_normals = torch.from_numpy(normals).to(self.device)
colors = np.stack(colors, 0)
target_colors = torch.from_numpy(colors).to(self.device)
return masks, target_colors, target_normals
def preprocess(self, color_pils, normal_pils):
###------------------ load target images -------------------------------
kernal = torch.ones(3, 3)
erode_iters = 2
normals = []
masks = []
colors = []
for normal, color in zip(normal_pils, color_pils):
normal = normal.resize((self.resolution, self.resolution), Image.BILINEAR)
normal = np.array(normal).astype(np.float32) / 255.
mask = normal[..., 3:] # alpha
mask_troch = torch.from_numpy(mask).unsqueeze(0)
for _ in range(erode_iters):
mask_torch = kornia.morphology.erosion(mask_troch, kernal)
mask_erode = mask_torch.squeeze(0).numpy()
masks.append(mask_erode)
normal = normal[..., :3] * mask_erode
normals.append(normal)
color = color.resize((self.resolution, self.resolution), Image.BILINEAR)
color = np.array(color).astype(np.float32) / 255.
color_mask = color[..., 3:] # alpha
# color_dilate = color[..., :3] * color_mask + bg_color * (1 - color_mask)
color_dilate = color[..., :3] * mask_erode + bg_color * (1 - mask_erode)
colors.append(color_dilate)
masks = np.stack(masks, 0)
masks = torch.from_numpy(masks).to(self.device)
normals = np.stack(normals, 0)
target_normals = torch.from_numpy(normals).to(self.device)
colors = np.stack(colors, 0)
target_colors = torch.from_numpy(colors).to(self.device)
return masks, target_colors, target_normals
def optimize_case(self, case, pose, clr_img, nrm_img, opti_texture=True):
case_path = f'{self.out_path}/{case}'
os.makedirs(case_path, exist_ok=True)
if clr_img is not None:
masks, target_colors, target_normals = self.preprocess(clr_img, nrm_img)
else:
masks, target_colors, target_normals = self.load_training_data(case)
# rotation
rz = R.from_euler('z', 180, degrees=True).as_matrix()
ry = R.from_euler('y', 180, degrees=True).as_matrix()
rz = torch.from_numpy(rz).float().to(self.device)
ry = torch.from_numpy(ry).float().to(self.device)
scale, offset = None, None
global_orient = pose["global_orient"] # pymaf_res[idx]['smplx_params']['body_pose'][:, :1, :, :2].to(device).reshape(1, 1, -1) # data["global_orient"]
body_pose = pose["body_pose"] # pymaf_res[idx]['smplx_params']['body_pose'][:, 1:22, :, :2].to(device).reshape(1, 21, -1) # data["body_pose"]
left_hand_pose = pose["left_hand_pose"] # pymaf_res[idx]['smplx_params']['left_hand_pose'][:, :, :, :2].to(device).reshape(1, 15, -1)
right_hand_pose = pose["right_hand_pose"] # pymaf_res[idx]['smplx_params']['right_hand_pose'][:, :, :, :2].to(device).reshape(1, 15, -1)
beta = pose["betas"]
# The optimizer and variables
optimed_pose = torch.tensor(body_pose,
device=self.device,
requires_grad=True) # [1,23,3,3]
optimed_trans = torch.tensor(pose["trans"],
device=self.device,
requires_grad=True) # [3]
optimed_betas = torch.tensor(beta,
device=self.device,
requires_grad=True) # [1,200]
optimed_orient = torch.tensor(global_orient,
device=self.device,
requires_grad=True) # [1,1,3,3]
optimed_rhand = torch.tensor(right_hand_pose,
device=self.device,
requires_grad=True)
optimed_lhand = torch.tensor(left_hand_pose,
device=self.device,
requires_grad=True)
optimed_params = [
{'params': [optimed_lhand, optimed_rhand], 'lr': 1e-3},
{'params': [optimed_betas, optimed_trans, optimed_orient, optimed_pose], 'lr': 3e-3},
]
optimizer_smpl = torch.optim.Adam(
optimed_params,
amsgrad=True,
)
scheduler_smpl = torch.optim.lr_scheduler.ReduceLROnPlateau(
optimizer_smpl,
mode="min",
factor=0.5,
verbose=0,
min_lr=1e-5,
patience=5,
)
smpl_steps = 100
for i in tqdm(range(smpl_steps)):
optimizer_smpl.zero_grad()
# 6d_rot to rot_mat
optimed_orient_mat = rot6d_to_rotmat(optimed_orient.view(
-1, 6)).unsqueeze(0)
optimed_pose_mat = rot6d_to_rotmat(optimed_pose.view(
-1, 6)).unsqueeze(0)
smpl_verts, smpl_landmarks, smpl_joints = self.econ_dataset.smpl_model(
shape_params=optimed_betas,
expression_params=tensor2variable(pose["exp"], self.device),
body_pose=optimed_pose_mat,
global_pose=optimed_orient_mat,
jaw_pose=tensor2variable(pose["jaw_pose"], self.device),
left_hand_pose=optimed_lhand,
right_hand_pose=optimed_rhand,
)
smpl_verts = smpl_verts + optimed_trans
v_smpl = torch.matmul(torch.matmul(smpl_verts.squeeze(0), rz.T), ry.T)
if scale is None:
scale, offset = scale_mesh(v_smpl.detach())
v_smpl = (v_smpl + offset) * scale * 2
# if i == 0:
# save_mesh(f'{case_path}/{case}_init_smpl.obj', v_smpl, self.smplx_face)
# exit()
normals = calc_vertex_normals(v_smpl, self.smplx_face)
nrm = self.renderer.render(v_smpl, self.smplx_face, normals=normals)
masks_ = nrm[..., 3:]
smpl_mask_loss = ((masks_ - masks) * self.weights).abs().mean()
smpl_nrm_loss = ((nrm[..., :3] - target_normals) * self.weights).abs().mean()
smpl_loss = smpl_mask_loss + smpl_nrm_loss
# smpl_loss = smpl_mask_loss
smpl_loss.backward()
optimizer_smpl.step()
scheduler_smpl.step(smpl_loss)
mesh_smpl = trimesh.Trimesh(vertices=v_smpl.detach().cpu().numpy(), faces=self.smplx_face.detach().cpu().numpy())
nrm_opt = MeshOptimizer(v_smpl.detach(), self.smplx_face.detach(), edge_len_lims=[0.01, 0.1])
vertices, faces = nrm_opt.vertices, nrm_opt.faces
# ###----------------------- optimization iterations-------------------------------------
for i in tqdm(range(self.opt.iters)):
nrm_opt.zero_grad()
normals = calc_vertex_normals(vertices,faces)
nrm = self.renderer.render(vertices,faces, normals=normals)
normals = nrm[..., :3]
# if i < 800:
loss = ((normals-target_normals) * self.weights).abs().mean()
# else:
# loss = ((normals-target_images) * masks).abs().mean()
alpha = nrm[..., 3:]
loss += ((alpha - masks) * self.weights).abs().mean()
loss.backward()
nrm_opt.step()
vertices,faces = nrm_opt.remesh()
if self.opt.debug and i % self.opt.snapshot_step == 0:
import imageio
os.makedirs(f'{case_path}/normals', exist_ok=True)
imageio.imwrite(f'{case_path}/normals/{i:02d}.png',(nrm.detach()[0,:,:,:3]*255).clamp(max=255).type(torch.uint8).cpu().numpy())
# mesh_remeshed = trimesh.Trimesh(vertices=vertices.detach().cpu().numpy(), faces=faces.detach().cpu().numpy())
# mesh_remeshed.export(f'{case_path}/{case}_remeshed_step{i}.obj')
torch.cuda.empty_cache()
mesh_remeshed = trimesh.Trimesh(vertices=vertices.detach().cpu().numpy(), faces=faces.detach().cpu().numpy())
mesh_remeshed.export(f'{case_path}/{case}_remeshed.obj')
# save_mesh(case, vertices, faces)
vertices = vertices.detach()
faces = faces.detach()
#### replace hand
smpl_data = SMPLX()
if self.opt.replace_hand and True in pose['hands_visibility'][0]:
hand_mask = torch.zeros(smpl_data.smplx_verts.shape[0], )
if pose['hands_visibility'][0][0]:
hand_mask.index_fill_(
0, torch.tensor(smpl_data.smplx_mano_vid_dict["left_hand"]), 1.0
)
if pose['hands_visibility'][0][1]:
hand_mask.index_fill_(
0, torch.tensor(smpl_data.smplx_mano_vid_dict["right_hand"]), 1.0
)
hand_mesh = apply_vertex_mask(mesh_smpl.copy(), hand_mask)
body_mesh = part_removal(
mesh_remeshed.copy(),
hand_mesh,
0.08,
self.device,
mesh_smpl.copy(),
region="hand"
)
final = poisson(sum([hand_mesh, body_mesh]), f'{case_path}/{case}_final.obj', 10, False)
else:
final = poisson(mesh_remeshed, f'{case_path}/{case}_final.obj', 10, False)
vertices = torch.from_numpy(final.vertices).float().to(self.device)
faces = torch.from_numpy(final.faces).long().to(self.device)
# Differing from paper, we use the texturing method in Unique3D
masked_color = []
for tmp in clr_img:
# tmp = Image.open(f'{self.opt.mv_path}/{case}/color_{view}_masked.png')
tmp = tmp.resize((self.resolution, self.resolution), Image.BILINEAR)
tmp = np.array(tmp).astype(np.float32) / 255.
masked_color.append(torch.from_numpy(tmp).permute(2, 0, 1).to(self.device))
meshes = self.proj_texture(masked_color, vertices, faces)
vertices = meshes.verts_packed().float()
faces = meshes.faces_packed().long()
colors = meshes.textures.verts_features_packed().float()
save_mesh(f'./{case_path}/result_clr_scale{self.opt.scale}_{case}.obj', vertices, faces, colors)
self.evaluate(vertices, colors, faces, save_path=f'{case_path}/result_clr_scale{self.opt.scale}_{case}.mp4', save_nrm=True)
def evaluate(self, target_vertices, target_colors, target_faces, save_path=None, save_nrm=False):
mv, proj = make_round_views(60, self.opt.scale, device=self.device)
renderer = NormalsRenderer(mv, proj, [512, 512], device=self.device)
target_images = renderer.render(target_vertices,target_faces, colors=target_colors)
target_images = target_images.detach().cpu().numpy()
target_images = target_images[..., :3] * target_images[..., 3:4] + bg_color * (1 - target_images[..., 3:4])
target_images = (target_images.clip(0, 1) * 255).astype(np.uint8)
if save_nrm:
target_normals = calc_vertex_normals(target_vertices, target_faces)
# target_normals[:, 2] *= -1
target_normals = renderer.render(target_vertices, target_faces, normals=target_normals)
target_normals = target_normals.detach().cpu().numpy()
target_normals = target_normals[..., :3] * target_normals[..., 3:4] + bg_color * (1 - target_normals[..., 3:4])
target_normals = (target_normals.clip(0, 1) * 255).astype(np.uint8)
frames = [np.concatenate([img, nrm], 1) for img, nrm in zip(target_images, target_normals)]
else:
frames = [img for img in target_images]
if save_path is not None:
write_video(frames, fps=25, save_path=save_path)
return frames
def run(self):
cases = sorted(os.listdir(self.opt.imgs_path))
for idx in range(len(cases)):
case = cases[idx].split('.')[0]
print(f'Processing {case}')
pose = self.econ_dataset.__getitem__(idx)
v, f, c = self.optimize_case(case, pose, None, None, opti_texture=True)
self.evaluate(v, c, f, save_path=f'{self.opt.res_path}/{case}/result_clr_scale{self.opt.scale}_{case}.mp4', save_nrm=True)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--config", help="path to the yaml configs file", default='config.yaml')
args, extras = parser.parse_known_args()
opt = OmegaConf.merge(OmegaConf.load(args.config), OmegaConf.from_cli(extras))
from econdataset import SMPLDataset
dataset_param = {'image_dir': opt.imgs_path, 'seg_dir': None, 'colab': False, 'has_det': True, 'hps_type': 'pixie'}
econdata = SMPLDataset(dataset_param, device='cuda')
EHuman = ReMesh(opt, econdata)
EHuman.run()