-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathgeometry.py
446 lines (356 loc) · 15.2 KB
/
geometry.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
"""Multi-view geometry & proejction code.."""
import torch
from einops import rearrange, repeat
from torch.nn import functional as F
import numpy as np
def d6_to_rotmat(d6):
a1, a2 = d6[..., :3], d6[..., 3:]
b1 = F.normalize(a1, dim=-1)
b2 = a2 - (b1 * a2).sum(-1, keepdim=True) * b1
b2 = F.normalize(b2, dim=-1)
b3 = torch.cross(b1, b2, dim=-1)
return torch.stack((b1, b2, b3), dim=-2)
def time_interp_poses(pose_inp,time_i,n_trgt,eye_pts):
i,j = max(0,int(time_i*(n_trgt-1))-1),int(time_i*(n_trgt-1))
pose_interp = camera_interp(*pose_inp[:,[i,j]].unbind(1),time_i)
if i==j: pose_interp=pose_inp[:,0]
pose_interp = repeat(pose_interp,"b x y -> b trgt x y",trgt=n_trgt)
return pose_interp
eye_pts = torch.cat((eye_pts,torch.ones_like(eye_pts[...,[0]])),-1)
query_pts = torch.einsum("bcij,bcdkj->bcdki",pose_interp,eye_pts)[...,:3]
return query_pts
def pixel_aligned_features(
coords_3d_world, cam2world, intrinsics, img_features, interp="bilinear",padding_mode="border",
):
# Args:
# coords_3d_world: shape (b, n, 3)
# cam2world: camera pose of shape (..., 4, 4)
# project 3d points to 2D
c3d_world_hom = homogenize_points(coords_3d_world)
c3d_cam_hom = transform_world2cam(c3d_world_hom, cam2world)
c2d_cam, depth = project(c3d_cam_hom, intrinsics.unsqueeze(1))
# now between 0 and 1. Map to -1 and 1
c2d_norm = (c2d_cam - 0.5) * 2
c2d_norm = rearrange(c2d_norm, "b n ch -> b n () ch")
c2d_norm = c2d_norm[..., :2]
# grid_sample
feats = F.grid_sample(
img_features, c2d_norm, align_corners=True, padding_mode=padding_mode, mode=interp
)
feats = feats.squeeze(-1) # b ch n
feats = rearrange(feats, "b ch n -> b n ch")
return feats, c3d_cam_hom[..., :3], c2d_cam
# https://gist.github.com/mkocabas/54ea2ff3b03260e3fedf8ad22536f427
def procrustes(S1, S2,weights=None):
if len(S1.shape)==4:
out = procrustes(S1.flatten(0,1),S2.flatten(0,1),weights.flatten(0,1) if weights is not None else None)
return out[0],out[1].unflatten(0,S1.shape[:2])
'''
Computes a similarity transform (sR, t) that takes
a set of 3D points S1 (BxNx3) closest to a set of 3D points, S2,
where R is an 3x3 rotation matrix, t 3x1 translation, s scale. / mod : assuming scale is 1
i.e. solves the orthogonal Procrutes problem.
'''
with torch.autocast(device_type='cuda', dtype=torch.float32):
S1 = S1.permute(0,2,1)
S2 = S2.permute(0,2,1)
if weights is not None:
weights=weights.permute(0,2,1)
transposed = True
if weights is None:
weights = torch.ones_like(S1[:,:1])
# 1. Remove mean.
weights_norm = weights/(weights.sum(-1,keepdim=True)+1e-6)
mu1 = (S1*weights_norm).sum(2,keepdim=True)
mu2 = (S2*weights_norm).sum(2,keepdim=True)
X1 = S1 - mu1
X2 = S2 - mu2
diags = torch.stack([torch.diag(w.squeeze(0)) for w in weights]) # does batched version exist?
# 3. The outer product of X1 and X2.
K = (X1@diags).bmm(X2.permute(0,2,1))
# 4. Solution that Maximizes trace(R'K) is R=U*V', where U, V are singular vectors of K.
U, s, V = torch.svd(K)
# Construct Z that fixes the orientation of R to get det(R)=1.
Z = torch.eye(U.shape[1], device=S1.device).unsqueeze(0)
Z = Z.repeat(U.shape[0],1,1)
Z[:,-1, -1] *= torch.sign(torch.det(U.bmm(V.permute(0,2,1))))
# Construct R.
R = V.bmm(Z.bmm(U.permute(0,2,1)))
# 6. Recover translation.
t = mu2 - ((R.bmm(mu1)))
# 7. Error:
S1_hat = R.bmm(S1) + t
# Combine recovered transformation as single matrix
R_=torch.eye(4)[None].expand(S1.size(0),-1,-1).to(S1)
R_[:,:3,:3]=R
T_=torch.eye(4)[None].expand(S1.size(0),-1,-1).to(S1)
T_[:,:3,-1]=t.squeeze(-1)
S_=torch.eye(4)[None].expand(S1.size(0),-1,-1).to(S1)
transf = T_@S_@R_
return (S1_hat-S2).square().mean(),transf
def symmetric_orthogonalization(x):
# https://github.com/amakadia/svd_for_pose
m = x.view(-1, 3, 3).type(torch.float)
u, s, v = torch.svd(m)
vt = torch.transpose(v, 1, 2)
det = torch.det(torch.matmul(u, vt))
det = det.view(-1, 1, 1)
vt = torch.cat((vt[:, :2, :], vt[:, -1:, :] * det), 1)
r = torch.matmul(u, vt)
return r
def rigidity_loss(ctx_xyz,trgt_xyz):
x_points = ctx_xyz #.view(-1, 3)
y_points = trgt_xyz #.view(-1, 3)
x_mean = x_points.mean(1, keepdim=True) # x_mean and y_mean define the global translation
y_mean = y_points.mean(1, keepdim=True)
x_points_centered = x_points - x_mean
y_points_centered = y_points - y_mean
x_scale = torch.sqrt(x_points_centered.pow(2).sum(2, keepdim=True)).mean(1, keepdim=True)
x_points_normalized = x_points_centered / x_scale # x_scale and y_scale define the global scales
y_scale = torch.sqrt(y_points_centered.pow(2).sum(2, keepdim=True)).mean(1, keepdim=True)
y_points_normalized = y_points_centered / y_scale
M = torch.einsum('b i k, b i j -> b k j', x_points_normalized, y_points_normalized) # M is the covariance matrix
R = symmetric_orthogonalization(M) #this is the rotation matrix
# Compute the transformed ctxt points
x_points_transformed = torch.matmul(x_points_normalized, R)
loss = (x_points_transformed - y_points_normalized).pow(2).mean()
return loss
def homogenize_points(points: torch.Tensor):
"""Appends a "1" to the coordinates of a (batch of) points of dimension DIM.
Args:
points: points of shape (..., DIM)
Returns:
points_hom: points with appended "1" dimension.
"""
ones = torch.ones_like(points[..., :1], device=points.device)
return torch.cat((points, ones), dim=-1)
def homogenize_vecs(vectors: torch.Tensor):
"""Appends a "0" to the coordinates of a (batch of) vectors of dimension DIM.
Args:
vectors: vectors of shape (..., DIM)
Returns:
vectors_hom: points with appended "0" dimension.
"""
zeros = torch.zeros_like(vectors[..., :1], device=vectors.device)
return torch.cat((vectors, zeros), dim=-1)
def unproject(
xy_pix: torch.Tensor, z: torch.Tensor, intrinsics: torch.Tensor
) -> torch.Tensor:
"""Unproject (lift) 2D pixel coordinates x_pix and per-pixel z coordinate
to 3D points in camera coordinates.
Args:
xy_pix: 2D pixel coordinates of shape (..., 2)
z: per-pixel depth, defined as z coordinate of shape (..., 1)
intrinscis: camera intrinscics of shape (..., 3, 3)
Returns:
xyz_cam: points in 3D camera coordinates.
"""
xy_pix_hom = homogenize_points(xy_pix)
xyz_cam = torch.einsum("...ij,...kj->...ki", intrinsics.inverse(), xy_pix_hom)
xyz_cam *= z
return xyz_cam
def transform_world2cam(
xyz_world_hom: torch.Tensor, cam2world: torch.Tensor
) -> torch.Tensor:
"""Transforms points from 3D world coordinates to 3D camera coordinates.
Args:
xyz_world_hom: homogenized 3D points of shape (..., 4)
cam2world: camera pose of shape (..., 4, 4)
Returns:
xyz_cam: points in camera coordinates.
"""
world2cam = torch.inverse(cam2world)
return transform_rigid(xyz_world_hom, world2cam)
def transform_cam2world(
xyz_cam_hom: torch.Tensor, cam2world: torch.Tensor
) -> torch.Tensor:
"""Transforms points from 3D world coordinates to 3D camera coordinates.
Args:
xyz_cam_hom: homogenized 3D points of shape (..., 4)
cam2world: camera pose of shape (..., 4, 4)
Returns:
xyz_world: points in camera coordinates.
"""
return transform_rigid(xyz_cam_hom, cam2world)
def transform_rigid(xyz_hom: torch.Tensor, T: torch.Tensor) -> torch.Tensor:
"""Apply a rigid-body transform to a (batch of) points / vectors.
Args:
xyz_hom: homogenized 3D points of shape (..., 4)
T: rigid-body transform matrix of shape (..., 4, 4)
Returns:
xyz_trans: transformed points.
"""
return torch.einsum("...ij,...kj->...ki", T, xyz_hom)
def get_unnormalized_cam_ray_directions(
xy_pix: torch.Tensor, intrinsics: torch.Tensor
) -> torch.Tensor:
return unproject(
xy_pix,
torch.ones_like(xy_pix[..., :1], device=xy_pix.device),
intrinsics=intrinsics,
)
def get_world_rays_(
xy_pix: torch.Tensor,
intrinsics: torch.Tensor,
cam2world: torch.Tensor,
) -> torch.Tensor:
if cam2world is None:
cam2world = torch.eye(4)[None].expand(xy_pix.size(0),-1,-1).to(xy_pix)
# Get camera origin of camera 1
cam_origin_world = cam2world[..., :3, -1]
# Get ray directions in cam coordinates
ray_dirs_cam = get_unnormalized_cam_ray_directions(xy_pix, intrinsics)
ray_dirs_cam = ray_dirs_cam / ray_dirs_cam.norm(dim=-1, keepdim=True)
# Homogenize ray directions
rd_cam_hom = homogenize_vecs(ray_dirs_cam)
# Transform ray directions to world coordinates
rd_world_hom = transform_cam2world(rd_cam_hom, cam2world)
# Tile the ray origins to have the same shape as the ray directions.
# Currently, ray origins have shape (batch, 3), while ray directions have shape
cam_origin_world = repeat(
cam_origin_world, "b ch -> b num_rays ch", num_rays=ray_dirs_cam.shape[1]
)
# Return tuple of cam_origins, ray_world_directions
return cam_origin_world, rd_world_hom[..., :3]
def get_world_rays(
xy_pix: torch.Tensor,
intrinsics: torch.Tensor,
cam2world: torch.Tensor,
) -> torch.Tensor:
if len(xy_pix.shape)==4:
out = get_world_rays_(xy_pix.flatten(0,1),intrinsics.flatten(0,1),cam2world.flatten(0,1) if cam2world is not None else None)
return [x.unflatten(0,xy_pix.shape[:2]) for x in out]
return get_world_rays_(xy_pix,intrinsics,cam2world)
def get_opencv_pixel_coordinates(
y_resolution: int,
x_resolution: int,
device='cpu'
):
"""For an image with y_resolution and x_resolution, return a tensor of pixel coordinates
normalized to lie in [0, 1], with the origin (0, 0) in the top left corner,
the x-axis pointing right, the y-axis pointing down, and the bottom right corner
being at (1, 1).
Returns:
xy_pix: a meshgrid of values from [0, 1] of shape
(y_resolution, x_resolution, 2)
"""
i, j = torch.meshgrid(
torch.linspace(0, 1, steps=x_resolution, device=device),
torch.linspace(0, 1, steps=y_resolution, device=device),
)
xy_pix = torch.stack([i.float(), j.float()], dim=-1).permute(1, 0, 2)
return xy_pix
def project(xyz_cam_hom: torch.Tensor, intrinsics: torch.Tensor) -> torch.Tensor:
"""Projects homogenized 3D points xyz_cam_hom in camera coordinates
to pixel coordinates.
Args:
xyz_cam_hom: 3D points of shape (..., 4)
intrinsics: camera intrinscics of shape (..., 3, 3)
Returns:
xy: homogeneous pixel coordinates of shape (..., 3) (final coordinate is 1)
"""
if len(intrinsics.shape)==len(xyz_cam_hom.shape): intrinsics=intrinsics.unsqueeze(1)
xyw = torch.einsum("...ij,...j->...i", intrinsics, xyz_cam_hom[..., :3])
z = xyw[..., -1:]
xyw = xyw / (z + 1e-5) # z-divide
return xyw[..., :2], z
def _sqrt_positive_part(x: torch.Tensor) -> torch.Tensor:
# from pytorch3d
"""
Returns torch.sqrt(torch.max(0, x))
but with a zero subgradient where x is 0.
"""
ret = torch.zeros_like(x)
positive_mask = x > 0
ret[positive_mask] = torch.sqrt(x[positive_mask])
return ret
def matrix_to_quaternion(matrix: torch.Tensor) -> torch.Tensor:
# from pytorch3d
"""
Convert rotations given as rotation matrices to quaternions.
Args:
matrix: Rotation matrices as tensor of shape (..., 3, 3).
Returns:
quaternions with real part first, as tensor of shape (..., 4).
"""
if matrix.size(-1) != 3 or matrix.size(-2) != 3:
raise ValueError(f"Invalid rotation matrix shape {matrix.shape}.")
batch_dim = matrix.shape[:-2]
m00, m01, m02, m10, m11, m12, m20, m21, m22 = torch.unbind(
matrix.reshape(batch_dim + (9,)), dim=-1
)
q_abs = _sqrt_positive_part(
torch.stack(
[
1.0 + m00 + m11 + m22,
1.0 + m00 - m11 - m22,
1.0 - m00 + m11 - m22,
1.0 - m00 - m11 + m22,
],
dim=-1,
)
)
# we produce the desired quaternion multiplied by each of r, i, j, k
quat_by_rijk = torch.stack(
[
torch.stack([q_abs[..., 0] ** 2, m21 - m12, m02 - m20, m10 - m01], dim=-1),
torch.stack([m21 - m12, q_abs[..., 1] ** 2, m10 + m01, m02 + m20], dim=-1),
torch.stack([m02 - m20, m10 + m01, q_abs[..., 2] ** 2, m12 + m21], dim=-1),
torch.stack([m10 - m01, m20 + m02, m21 + m12, q_abs[..., 3] ** 2], dim=-1),
],
dim=-2,
)
# We floor here at 0.1 but the exact level is not important; if q_abs is small,
# the candidate won't be picked.
flr = torch.tensor(0.1).to(dtype=q_abs.dtype, device=q_abs.device)
quat_candidates = quat_by_rijk / (2.0 * q_abs[..., None].max(flr))
# if not for numerical problems, quat_candidates[i] should be same (up to a sign),
# forall i; we pick the best-conditioned one (with the largest denominator)
return quat_candidates[
F.one_hot(q_abs.argmax(dim=-1), num_classes=4) > 0.5, :
].reshape(batch_dim + (4,))
def quaternion_to_matrix(quaternions: torch.Tensor) -> torch.Tensor:
# from pytorch3d
"""
Convert rotations given as quaternions to rotation matrices.
Args:
quaternions: quaternions with real part first,
as tensor of shape (..., 4).
Returns:
Rotation matrices as tensor of shape (..., 3, 3).
"""
r, i, j, k = torch.unbind(quaternions, -1)
two_s = 2.0 / (quaternions * quaternions).sum(-1)
o = torch.stack(
(
1 - two_s * (j * j + k * k),
two_s * (i * j - k * r),
two_s * (i * k + j * r),
two_s * (i * j + k * r),
1 - two_s * (i * i + k * k),
two_s * (j * k - i * r),
two_s * (i * k - j * r),
two_s * (j * k + i * r),
1 - two_s * (i * i + j * j),
),
-1,
)
return o.reshape(quaternions.shape[:-1] + (3, 3))
def camera_interp(camera1, camera2, t):
if len(camera1.shape)==3:
return torch.stack([camera_interp(cam1,cam2,t) for cam1,cam2 in zip(camera1,camera2)])
# Extract the rotation component from the camera matrices
q1 = matrix_to_quaternion(camera1[:3, :3])
q2 = matrix_to_quaternion(camera2[:3, :3])
# todo add negative quaternion check to not go long way around
# Interpolate the quaternions using slerp
cos_angle = (q1 * q2).sum(dim=0)
angle = torch.acos(cos_angle.clamp(-1, 1))
q_interpolated = (q1 * torch.sin((1 - t) * angle) + q2 * torch.sin(t * angle)) / torch.sin(angle)
rotation_interpolated = quaternion_to_matrix(q_interpolated)
# Interpolate the translation component
translation_interpolated = torch.lerp(camera1[:3,-1], camera2[:3,-1], t)
cam_interpolated = torch.eye(4)
cam_interpolated[:3,:3]=rotation_interpolated
cam_interpolated[:3,-1]=translation_interpolated
return cam_interpolated.cuda()